Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2015, Volume 20, Issue 2, Pages 65–87 (Mi fpm1641)  

This article is cited in 1 scientific paper (total in 1 paper)

The degree of compact multivalued perturbations of Fredholm mappings of positive index and its application to a certain optimal control problem

V. G. Zvyagin

Voronezh State University
Full-text PDF (256 kB) Citations (1)
References:
Abstract: Earlier a topological characteristic of the degree type for multivalued perturbations of Fredholm mappings with zero index was constructed and it was assumed that the multivalued perturbation permits a single-valued approximation. In this paper, similar characteristic is constructed for multivalued perturbations of Fredholm mappings of positive index and its application is given to the problem of the existence of an optimal solution for the boundary-value problem in the theory of ordinary differential equations with feedback.
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 223, Issue 6, Pages 695–710
DOI: https://doi.org/10.1007/s10958-017-3379-3
Bibliographic databases:
Document Type: Article
UDC: 515.126.4
Language: Russian
Citation: V. G. Zvyagin, “The degree of compact multivalued perturbations of Fredholm mappings of positive index and its application to a certain optimal control problem”, Fundam. Prikl. Mat., 20:2 (2015), 65–87; J. Math. Sci., 223:6 (2017), 695–710
Citation in format AMSBIB
\Bibitem{Zvy15}
\by V.~G.~Zvyagin
\paper The degree of compact multivalued perturbations of Fredholm mappings of positive index and its application to a~certain optimal control problem
\jour Fundam. Prikl. Mat.
\yr 2015
\vol 20
\issue 2
\pages 65--87
\mathnet{http://mi.mathnet.ru/fpm1641}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3472269}
\elib{https://elibrary.ru/item.asp?id=25686563}
\transl
\jour J. Math. Sci.
\yr 2017
\vol 223
\issue 6
\pages 695--710
\crossref{https://doi.org/10.1007/s10958-017-3379-3}
Linking options:
  • https://www.mathnet.ru/eng/fpm1641
  • https://www.mathnet.ru/eng/fpm/v20/i2/p65
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:277
    Full-text PDF :119
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024