Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2014, Volume 19, Issue 6, Pages 141–152 (Mi fpm1618)  

Orthogonal graded completion of modules

A. L. Kanunnikov

Lomonosov Moscow State University
References:
Abstract: The construction and study of the orthogonal completion functor is an important step in the orthogonal completeness theory developed by K. I. Beidar and A. V. Mikhalev. The research of the graded orthogonal completion begun by the author is continued in this work. We consider associative rings graded by a group and modules over such rings graded by a polygon over the same group. Note that the graduation of a module by a group is a partial case of a more general and natural construction.
For any topology $\mathcal F$ of a graded ring $R$ consisting of graded right dense ideals and containing all two-sided graded dense ideals, the functor $O^\mathrm{gr}_\mathcal F$ of the graded orthogonal completion is constructed and studied in this paper. This functor maps the category of right graded $R$-modules into the category of right graded $O^\mathrm{gr}_\mathcal F(R)$-modules. The important feature of the graded case is that the graded modules $Q^\mathrm{gr}_\mathcal F(M)$ and $O^\mathrm{gr}_\mathcal F(M)$ (where $M$ is a right graded $R$-module) may not be orthogonal complete. A criterion for the orthogonal completeness is proved. As a corollary we get that these modules are orthogonal complete in the case of a finite polygon. The properties of the functor $O^\mathrm{gr}_\mathcal F$ and a criterion of its exactness are also established.
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 221, Issue 3, Pages 401–408
DOI: https://doi.org/10.1007/s10958-017-3234-6
Bibliographic databases:
Document Type: Article
UDC: 512.552
Language: Russian
Citation: A. L. Kanunnikov, “Orthogonal graded completion of modules”, Fundam. Prikl. Mat., 19:6 (2014), 141–152; J. Math. Sci., 221:3 (2017), 401–408
Citation in format AMSBIB
\Bibitem{Kan14}
\by A.~L.~Kanunnikov
\paper Orthogonal graded completion of modules
\jour Fundam. Prikl. Mat.
\yr 2014
\vol 19
\issue 6
\pages 141--152
\mathnet{http://mi.mathnet.ru/fpm1618}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3431905}
\transl
\jour J. Math. Sci.
\yr 2017
\vol 221
\issue 3
\pages 401--408
\crossref{https://doi.org/10.1007/s10958-017-3234-6}
Linking options:
  • https://www.mathnet.ru/eng/fpm1618
  • https://www.mathnet.ru/eng/fpm/v19/i6/p141
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:297
    Full-text PDF :103
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024