Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2014, Volume 19, Issue 6, Pages 3–5 (Mi fpm1612)  

Bézout rings with finite Krull dimension

A. Gatalevych

Ivan Franko State University of L'viv, Ukraine
References:
Abstract: It is proven that if $R$ is a commutative Bézout ring of Krull dimension $1$, with stable range $2$, then $R$ is an elementary divisor ring.
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 221, Issue 3, Pages 313–314
DOI: https://doi.org/10.1007/s10958-017-3228-4
Bibliographic databases:
Document Type: Article
UDC: 512.552.12
Language: Russian
Citation: A. Gatalevych, “Bézout rings with finite Krull dimension”, Fundam. Prikl. Mat., 19:6 (2014), 3–5; J. Math. Sci., 221:3 (2017), 313–314
Citation in format AMSBIB
\Bibitem{Gat14}
\by A.~Gatalevych
\paper B\'ezout rings with finite Krull dimension
\jour Fundam. Prikl. Mat.
\yr 2014
\vol 19
\issue 6
\pages 3--5
\mathnet{http://mi.mathnet.ru/fpm1612}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3431899}
\transl
\jour J. Math. Sci.
\yr 2017
\vol 221
\issue 3
\pages 313--314
\crossref{https://doi.org/10.1007/s10958-017-3228-4}
Linking options:
  • https://www.mathnet.ru/eng/fpm1612
  • https://www.mathnet.ru/eng/fpm/v19/i6/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:206
    Full-text PDF :96
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024