|
Fundamentalnaya i Prikladnaya Matematika, 2014, Volume 19, Issue 6, Pages 3–5
(Mi fpm1612)
|
|
|
|
Bézout rings with finite Krull dimension
A. Gatalevych Ivan Franko State University of L'viv, Ukraine
Abstract:
It is proven that if $R$ is a commutative Bézout ring of Krull dimension $1$, with stable range $2$, then $R$ is an elementary divisor ring.
Citation:
A. Gatalevych, “Bézout rings with finite Krull dimension”, Fundam. Prikl. Mat., 19:6 (2014), 3–5; J. Math. Sci., 221:3 (2017), 313–314
Linking options:
https://www.mathnet.ru/eng/fpm1612 https://www.mathnet.ru/eng/fpm/v19/i6/p3
|
Statistics & downloads: |
Abstract page: | 206 | Full-text PDF : | 96 | References: | 32 |
|