Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2014, Volume 19, Issue 5, Pages 185–212 (Mi fpm1611)  

This article is cited in 10 scientific papers (total in 10 papers)

On the best linear approximation of holomorphic functions

Yu. A. Farkovab

a Russian State Geological Prospecting University
b Russian Academy of National Economy and Public Administration under the President of the Russian Federation
References:
Abstract: Let $\Omega$ be an open subset of the complex plane $\mathbb C$ and let $E$ be a compact subset of $~\Omega$. The present survey is concerned with linear $n$-widths for the class $H^\infty(\Omega)$ in the space $C(E)$ and some problems on the best linear approximation of classes of Hardy–Sobolev-type in $L^p$-spaces. It is known that the partial sums of the Faber series give the classical method for approximation of functions $f\in H^\infty(\Omega)$ in the metric of $C(E)$ when $E$ is a bounded continuum with simply connected complement and $\Omega$ is a canonical neighborhood of $E$. Generalizations of the Faber series are defined for the case where $\Omega$ is a multiply connected domain or a disjoint union of several such domains, while $E$ can be split into a finite number of continua. The exact values of $n$-widths and asymptotic formulas for the $\varepsilon$-entropy of classes of holomorphic functions with bounded fractional derivatives in domains of tube type are presented. Also, some results about Faber's approximations in connection with their applications in numerical analysis are mentioned.
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 218, Issue 5, Pages 678–698
DOI: https://doi.org/10.1007/s10958-016-3050-4
Bibliographic databases:
Document Type: Article
UDC: 517.538.5+517.551
Language: Russian
Citation: Yu. A. Farkov, “On the best linear approximation of holomorphic functions”, Fundam. Prikl. Mat., 19:5 (2014), 185–212; J. Math. Sci., 218:5 (2016), 678–698
Citation in format AMSBIB
\Bibitem{Far14}
\by Yu.~A.~Farkov
\paper On the best linear approximation of holomorphic functions
\jour Fundam. Prikl. Mat.
\yr 2014
\vol 19
\issue 5
\pages 185--212
\mathnet{http://mi.mathnet.ru/fpm1611}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3431898}
\zmath{https://zbmath.org/?q=an:06653732}
\transl
\jour J. Math. Sci.
\yr 2016
\vol 218
\issue 5
\pages 678--698
\crossref{https://doi.org/10.1007/s10958-016-3050-4}
Linking options:
  • https://www.mathnet.ru/eng/fpm1611
  • https://www.mathnet.ru/eng/fpm/v19/i5/p185
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:510
    Full-text PDF :185
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024