Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2014, Volume 19, Issue 5, Pages 143–166 (Mi fpm1609)  

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotic properties of Chebyshev splines with fixed number of knots

Yu. V. Malykhin

Steklov Mathematical Institute of Russian Academy of Sciences
Full-text PDF (276 kB) Citations (1)
References:
Abstract: V. M. Tikhomirov expressed Kolmogorov widths of the class $W^r:=W^r_\infty[-1,1]$ in the space $C:=C[-1,1]$ as a norm of special splines: $d_N(W^r,C)=\|x_{N-r,r}\|_C$, $N\ge r$; these splines were named Chebyshev splines. The function $x_{n,r}$ is a perfect spline of order $r$ with $n$ knots. We study the asymptotic behaviour of Chebyshev splines for $r\to\infty$ and fixed $n$. We calculate the asymptotics of knots and the $C$-norm of $x_{n,r}$ and prove that $x_{n,r}/x_{n,r}(1)=T_{n+r}+o(1)$. As a corollary, we obtain that $d_{n+r}(W^r,C)/d_r(W^r,C)\sim A_nr^{-n/2}$ as $r\to\infty$.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00332
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 218, Issue 5, Pages 647–663
DOI: https://doi.org/10.1007/s10958-016-3048-y
Bibliographic databases:
Document Type: Article
UDC: 517.518.8
Language: Russian
Citation: Yu. V. Malykhin, “Asymptotic properties of Chebyshev splines with fixed number of knots”, Fundam. Prikl. Mat., 19:5 (2014), 143–166; J. Math. Sci., 218:5 (2016), 647–663
Citation in format AMSBIB
\Bibitem{Mal14}
\by Yu.~V.~Malykhin
\paper Asymptotic properties of Chebyshev splines with fixed number of knots
\jour Fundam. Prikl. Mat.
\yr 2014
\vol 19
\issue 5
\pages 143--166
\mathnet{http://mi.mathnet.ru/fpm1609}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3431896}
\elib{https://elibrary.ru/item.asp?id=27567806}
\transl
\jour J. Math. Sci.
\yr 2016
\vol 218
\issue 5
\pages 647--663
\crossref{https://doi.org/10.1007/s10958-016-3048-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85028241556}
Linking options:
  • https://www.mathnet.ru/eng/fpm1609
  • https://www.mathnet.ru/eng/fpm/v19/i5/p143
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:317
    Full-text PDF :121
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024