Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2014, Volume 19, Issue 5, Pages 127–141 (Mi fpm1608)  

The best approximation of a set whose elements are known approximately

G. G. Magaril-Il'yaevab, K. Yu. Osipenkoca, E. O. Sivkovad

a Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
b Lomonosov Moscow State University
c Moscow State Aviation Technological University
d Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
References:
Abstract: This paper is concerned with the problem of the best (in a precisely defined sense) approximation with given accuracy of periodic functions and functions on the real line from, respectively, a finite tuple of noisy Fourier coefficients or noisy Fourier transform on an arbitrary set of finite measure.
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 218, Issue 5, Pages 636–646
DOI: https://doi.org/10.1007/s10958-016-3047-z
Bibliographic databases:
Document Type: Article
UDC: 517.518.8
Language: Russian
Citation: G. G. Magaril-Il'yaev, K. Yu. Osipenko, E. O. Sivkova, “The best approximation of a set whose elements are known approximately”, Fundam. Prikl. Mat., 19:5 (2014), 127–141; J. Math. Sci., 218:5 (2016), 636–646
Citation in format AMSBIB
\Bibitem{MagOsiSiv14}
\by G.~G.~Magaril-Il'yaev, K.~Yu.~Osipenko, E.~O.~Sivkova
\paper The best approximation of a~set whose elements are known approximately
\jour Fundam. Prikl. Mat.
\yr 2014
\vol 19
\issue 5
\pages 127--141
\mathnet{http://mi.mathnet.ru/fpm1608}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3431895}
\transl
\jour J. Math. Sci.
\yr 2016
\vol 218
\issue 5
\pages 636--646
\crossref{https://doi.org/10.1007/s10958-016-3047-z}
Linking options:
  • https://www.mathnet.ru/eng/fpm1608
  • https://www.mathnet.ru/eng/fpm/v19/i5/p127
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:421
    Full-text PDF :165
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024