Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2014, Volume 19, Issue 2, Pages 125–149 (Mi fpm1580)  

On algorithmic methods of analysis of two-colorings of hypergraphs

A. V. Lebedeva

Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: This paper deals with an extremal problem concerning hypergraph colorings. Let $k$ be an integer. The problem is to find the value $m_k(n)$ equal to the minimum number of edges in an $n$-uniform hypergraph not admitting two-colorings of the vertex set such that every edge of the hypergraph contains at least $k$ vertices of each color. In this paper, we obtain upper bounds of $m_k(n)$ for small $k$ and $n$, the exact value of $m_4(8)$, and a lower bound for $m_3(7)$.
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 213, Issue 2, Pages 211–229
DOI: https://doi.org/10.1007/s10958-016-2711-7
Bibliographic databases:
Document Type: Article
UDC: 519.179.1+519.174.7
Language: Russian
Citation: A. V. Lebedeva, “On algorithmic methods of analysis of two-colorings of hypergraphs”, Fundam. Prikl. Mat., 19:2 (2014), 125–149; J. Math. Sci., 213:2 (2016), 211–229
Citation in format AMSBIB
\Bibitem{Leb14}
\by A.~V.~Lebedeva
\paper On algorithmic methods of analysis of two-colorings of hypergraphs
\jour Fundam. Prikl. Mat.
\yr 2014
\vol 19
\issue 2
\pages 125--149
\mathnet{http://mi.mathnet.ru/fpm1580}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3431918}
\transl
\jour J. Math. Sci.
\yr 2016
\vol 213
\issue 2
\pages 211--229
\crossref{https://doi.org/10.1007/s10958-016-2711-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84954565106}
Linking options:
  • https://www.mathnet.ru/eng/fpm1580
  • https://www.mathnet.ru/eng/fpm/v19/i2/p125
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:260
    Full-text PDF :128
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024