Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2014, Volume 19, Issue 2, Pages 25–42 (Mi fpm1576)  

This article is cited in 2 scientific papers (total in 2 papers)

Prime radical of loops and $\Omega$-loops. I

A. V. Gribov, A. V. Mikhalev

Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (205 kB) Citations (2)
References:
Abstract: In this paper, main properties of a commutator of two normal subloops of a loop are considered. The notion of a prime radical of loops is introduced and its characterization as a set of strongly Engel elements is given. Also an $\Omega$-prime radical of $\Omega$-loops is defined and its elementwise characterization is given.
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 213, Issue 2, Pages 145–157
DOI: https://doi.org/10.1007/s10958-016-2707-3
Bibliographic databases:
Document Type: Article
UDC: 512.548.77+512.552.12
Language: Russian
Citation: A. V. Gribov, A. V. Mikhalev, “Prime radical of loops and $\Omega$-loops. I”, Fundam. Prikl. Mat., 19:2 (2014), 25–42; J. Math. Sci., 213:2 (2016), 145–157
Citation in format AMSBIB
\Bibitem{GriMik14}
\by A.~V.~Gribov, A.~V.~Mikhalev
\paper Prime radical of loops and $\Omega$-loops.~I
\jour Fundam. Prikl. Mat.
\yr 2014
\vol 19
\issue 2
\pages 25--42
\mathnet{http://mi.mathnet.ru/fpm1576}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3431914}
\transl
\jour J. Math. Sci.
\yr 2016
\vol 213
\issue 2
\pages 145--157
\crossref{https://doi.org/10.1007/s10958-016-2707-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84954485947}
Linking options:
  • https://www.mathnet.ru/eng/fpm1576
  • https://www.mathnet.ru/eng/fpm/v19/i2/p25
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:392
    Full-text PDF :149
    References:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024