Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2014, Volume 19, Issue 1, Pages 33–44 (Mi fpm1567)  

Geometry of totally real Galois fields of degree 4

Yu. Yu. Kochetkov

National Research University "Higher School of Economics", Moscow, Russia
References:
Abstract: We consider a totally real Galois field $K$ of degree 4 as the linear coordinate space $\mathbb Q^4\subset\mathbb R^4$. An element $k\in K$ is called strictly positive if all its conjugates are positive. The set of strictly positive elements is a convex cone in $\mathbb Q^4$. The convex hull of strictly positive integral elements is a convex subset of this cone and its boundary $\Gamma$ is an infinite union of $3$-dimensional polyhedrons. The group $U$ of strictly positive units acts on $\Gamma$: the action of a strictly positive unit permutes polyhedrons. Examples of fundamental domains of this action are the object of study in this work.
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 211, Issue 3, Pages 319–326
DOI: https://doi.org/10.1007/s10958-015-2608-x
Bibliographic databases:
Document Type: Article
UDC: 511+514
Language: Russian
Citation: Yu. Yu. Kochetkov, “Geometry of totally real Galois fields of degree 4”, Fundam. Prikl. Mat., 19:1 (2014), 33–44; J. Math. Sci., 211:3 (2015), 319–326
Citation in format AMSBIB
\Bibitem{Koc14}
\by Yu.~Yu.~Kochetkov
\paper Geometry of totally real Galois fields of degree~4
\jour Fundam. Prikl. Mat.
\yr 2014
\vol 19
\issue 1
\pages 33--44
\mathnet{http://mi.mathnet.ru/fpm1567}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3431869}
\transl
\jour J. Math. Sci.
\yr 2015
\vol 211
\issue 3
\pages 319--326
\crossref{https://doi.org/10.1007/s10958-015-2608-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84945217790}
Linking options:
  • https://www.mathnet.ru/eng/fpm1567
  • https://www.mathnet.ru/eng/fpm/v19/i1/p33
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025