|
Fundamentalnaya i Prikladnaya Matematika, 2013, Volume 18, Issue 6, Pages 51–75
(Mi fpm1552)
|
|
|
|
Computation of the first Stiefel–Whitney class for the variety $\overline{\mathcal M_{0,n}^\mathbb R}$
N. Ya. Amburgab, E. M. Kreinesca a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow, Russia
b National Research University "Higher School of Economics", Moscow, Russia
c Lomonosov Moscow State University, Moscow, Russia
Abstract:
We compute the class $W_{n-4}(\overline{\mathcal M_{0,n}^\mathbb R})$, which is Poincaré dual to the first Stiefel–Whitney class for the variety $\overline{\mathcal M_{0,n}^\mathbb R}$ in terms of the natural cell decomposition of $\overline{\mathcal M_{0,n}^\mathbb R}$.
Citation:
N. Ya. Amburg, E. M. Kreines, “Computation of the first Stiefel–Whitney class for the variety $\overline{\mathcal M_{0,n}^\mathbb R}$”, Fundam. Prikl. Mat., 18:6 (2013), 51–75; J. Math. Sci., 209:2 (2015), 192–211
Linking options:
https://www.mathnet.ru/eng/fpm1552 https://www.mathnet.ru/eng/fpm/v18/i6/p51
|
Statistics & downloads: |
Abstract page: | 263 | Full-text PDF : | 123 | References: | 50 |
|