Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2013, Volume 18, Issue 5, Pages 175–185 (Mi fpm1548)  

This article is cited in 2 scientific papers (total in 2 papers)

Best recovery of the Laplace operator of a function and sharp inequalities

E. O. Sivkova

Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow, Russia
Full-text PDF (138 kB) Citations (2)
References:
Abstract: The paper is concerned with the problem of optimal recovery of fractional powers of the Laplace operator in the uniform norm on the multivariate generalized Sobolev class of functions from incomplete data about the Fourier transform of these functions on the ball of radius $r$ centered at the origin. An optimal recovery method is constructed, and a number $\hat r>0$ is specified such that for $r\le\hat r$ the method makes use of all the information about the Fourier transform, smoothing thereof; and if $r>\hat r$, then the information on the Fourier transform proves superfluous and hence is not used by the optimal method. For fractional powers of the Laplace operator, a sharp inequality is proved. This inequality turns out to be closely related to the recovery problem and is an analogue of Kolmogorov-type inequalities for derivatives.
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 209, Issue 1, Pages 130–137
DOI: https://doi.org/10.1007/s10958-015-2490-6
Bibliographic databases:
Document Type: Article
UDC: 517.984.64
Language: Russian
Citation: E. O. Sivkova, “Best recovery of the Laplace operator of a function and sharp inequalities”, Fundam. Prikl. Mat., 18:5 (2013), 175–185; J. Math. Sci., 209:1 (2015), 130–137
Citation in format AMSBIB
\Bibitem{Siv13}
\by E.~O.~Sivkova
\paper Best recovery of the Laplace operator of a~function and sharp inequalities
\jour Fundam. Prikl. Mat.
\yr 2013
\vol 18
\issue 5
\pages 175--185
\mathnet{http://mi.mathnet.ru/fpm1548}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3431851}
\transl
\jour J. Math. Sci.
\yr 2015
\vol 209
\issue 1
\pages 130--137
\crossref{https://doi.org/10.1007/s10958-015-2490-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938291016}
Linking options:
  • https://www.mathnet.ru/eng/fpm1548
  • https://www.mathnet.ru/eng/fpm/v18/i5/p175
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:291
    Full-text PDF :149
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024