Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2013, Volume 18, Issue 5, Pages 89–118 (Mi fpm1543)  

This article is cited in 10 scientific papers (total in 10 papers)

Well-posedness of approximation and optimization problems for weakly convex sets and functions

G. E. Ivanov, M. S. Lopushanski

Moscow Institute of Physics and Technology (State University), Moscow, Russia
References:
Abstract: We consider the class of weakly convex sets with respect to a quasiball in a Banach space. This class generalizes the classes of sets with positive reach, proximal smooth sets and prox-regular sets. We prove the well-posedness of the closest points problem of two sets, one of which is weakly convex with respect to a quasiball $M$, and the other one is a summand of the quasiball $-rM$, where $r\in(0,1)$. We show that if a quasiball $B$ is a summand of a quasiball $M$, then a set that is weakly convex with respect to the quasiball $M$ is also weakly convex with respect to the quasiball $B$. We consider the class of weakly convex functions with respect to a given convex continuous function $\gamma$ that consists of functions whose epigraphs are weakly convex sets with respect to the epigraph of $\gamma$. We obtain a sufficient condition for the well-posedness of the infimal convolution problem, and also a sufficient condition for the existence, uniqueness, and continuous dependence on parameters of the minimizer.
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 209, Issue 1, Pages 66–87
DOI: https://doi.org/10.1007/s10958-015-2485-3
Bibliographic databases:
Document Type: Article
UDC: 517.982.252
Language: Russian
Citation: G. E. Ivanov, M. S. Lopushanski, “Well-posedness of approximation and optimization problems for weakly convex sets and functions”, Fundam. Prikl. Mat., 18:5 (2013), 89–118; J. Math. Sci., 209:1 (2015), 66–87
Citation in format AMSBIB
\Bibitem{IvaLop13}
\by G.~E.~Ivanov, M.~S.~Lopushanski
\paper Well-posedness of approximation and optimization problems for weakly convex sets and functions
\jour Fundam. Prikl. Mat.
\yr 2013
\vol 18
\issue 5
\pages 89--118
\mathnet{http://mi.mathnet.ru/fpm1543}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3431846}
\transl
\jour J. Math. Sci.
\yr 2015
\vol 209
\issue 1
\pages 66--87
\crossref{https://doi.org/10.1007/s10958-015-2485-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938292380}
Linking options:
  • https://www.mathnet.ru/eng/fpm1543
  • https://www.mathnet.ru/eng/fpm/v18/i5/p89
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:454
    Full-text PDF :177
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024