Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2013, Volume 18, Issue 4, Pages 155–184 (Mi fpm1536)  

Extension of endomorphisms of the subsemigroup $\mathrm{GE}^+_2(R)$ to endomorphisms of $\mathrm{GE}^+_2(R[x])$, where $R$ is a partially-ordered commutative ring without zero divisors

O. I. Tsarkov

Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: Let $R$ be a partially ordered commutative ring without zero divisors, $G_n(R)$ be the subsemigroup of $\mathrm{GL}_n(R)$ consisting of matrices with nonnegative elements, and $\mathrm{GE}^+_n(R)$ be its subsemigroup generated by elementary transformation matrices, diagonal matrices, and permutation matrices. In this paper, we describe in which cases endomorphisms of $\mathrm{GE}^+_2(R)$ can be extended to endomorphisms of $\mathrm{GE}^+_2(R[x])$.
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 206, Issue 6, Pages 711–733
DOI: https://doi.org/10.1007/s10958-015-2348-y
Bibliographic databases:
Document Type: Article
UDC: 512.55+512.64
Language: Russian
Citation: O. I. Tsarkov, “Extension of endomorphisms of the subsemigroup $\mathrm{GE}^+_2(R)$ to endomorphisms of $\mathrm{GE}^+_2(R[x])$, where $R$ is a partially-ordered commutative ring without zero divisors”, Fundam. Prikl. Mat., 18:4 (2013), 155–184; J. Math. Sci., 206:6 (2015), 711–733
Citation in format AMSBIB
\Bibitem{Tsa13}
\by O.~I.~Tsarkov
\paper Extension of endomorphisms of the subsemigroup $\mathrm{GE}^+_2(R)$ to endomorphisms of $\mathrm{GE}^+_2(R[x])$, where~$R$ is a~partially-ordered commutative ring without zero divisors
\jour Fundam. Prikl. Mat.
\yr 2013
\vol 18
\issue 4
\pages 155--184
\mathnet{http://mi.mathnet.ru/fpm1536}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3431839}
\transl
\jour J. Math. Sci.
\yr 2015
\vol 206
\issue 6
\pages 711--733
\crossref{https://doi.org/10.1007/s10958-015-2348-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84956766203}
Linking options:
  • https://www.mathnet.ru/eng/fpm1536
  • https://www.mathnet.ru/eng/fpm/v18/i4/p155
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:226
    Full-text PDF :107
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024