Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2013, Volume 18, Issue 4, Pages 41–70 (Mi fpm1528)  

This article is cited in 7 scientific papers (total in 7 papers)

Multiplicatively idempotent semirings

E. M. Vechtomov, A. A. Petrov

Vyatka State University of Humanities, Vyatka, Russia
Full-text PDF (294 kB) Citations (7)
References:
Abstract: The article is devoted to the investigation of semirings with idempotent multiplication. General structure theorems for such semirings are proved. We focus on the study of the class $\mathfrak M$ of all commutative multiplicatively idempotent semirings. We obtain necessary conditions when semirings from $\mathfrak M$ are subdirectly irreducible. We consider some properties of the variety $\mathfrak M$. In particular, we show that $\mathfrak M$ is generated by two of its subvarieties, defined by the identities $3x=x$ and $3x=2x$. We explore the variety $\mathfrak N$ generated by two-element commutative multiplicatively idempotent semirings. It is proved that the lattice of all subvarieties of $\mathfrak N$ is a $16$-element Boolean lattice.
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 206, Issue 6, Pages 634–653
DOI: https://doi.org/10.1007/s10958-015-2340-6
Bibliographic databases:
Document Type: Article
UDC: 512.558
Language: Russian
Citation: E. M. Vechtomov, A. A. Petrov, “Multiplicatively idempotent semirings”, Fundam. Prikl. Mat., 18:4 (2013), 41–70; J. Math. Sci., 206:6 (2015), 634–653
Citation in format AMSBIB
\Bibitem{VecPet13}
\by E.~M.~Vechtomov, A.~A.~Petrov
\paper Multiplicatively idempotent semirings
\jour Fundam. Prikl. Mat.
\yr 2013
\vol 18
\issue 4
\pages 41--70
\mathnet{http://mi.mathnet.ru/fpm1528}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3431831}
\transl
\jour J. Math. Sci.
\yr 2015
\vol 206
\issue 6
\pages 634--653
\crossref{https://doi.org/10.1007/s10958-015-2340-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84956828248}
Linking options:
  • https://www.mathnet.ru/eng/fpm1528
  • https://www.mathnet.ru/eng/fpm/v18/i4/p41
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:487
    Full-text PDF :181
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024