Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2013, Volume 18, Issue 3, Pages 69–76 (Mi fpm1517)  

Symmetric polynomials and nonfinitely generated $\mathrm{Sym}(\mathbb N)$-invariant ideals

E. A. da Costa, A. N. Krasilnikov

University of Brasilia, Brasilia, Brazil
References:
Abstract: Let $K$ be a field and let $\mathbb N=\{1,2,\dots\}$ be the set of all positive integers. Let $R_n=K[x_{ij}\mid1\le i\le n,\ j\in\mathbb N]$ be the ring of polynomials in $x_{ij}$ ($1\le i\le n$, $j\in\mathbb N$) over $K$. Let $\mathrm S_n=\mathrm{Sym}(\{1,2,\dots,n\})$ and $\mathrm{Sym}(\mathbb N)$ be the groups of permutations of the sets $\{1,2,\dots,n\}$ and $\mathbb N$, respectively. Then $\mathrm S_n$ and $\mathrm{Sym}(\mathbb N)$ act on $R_n$ in a natural way: $\tau(x_{ij})=x_{\tau(i)j}$ and $\sigma(x_{ij})=x_{i\sigma(j)}$, for all $i\in\{1,2,\dots,n\}$ and $j\in\mathbb N$, $\tau\in\mathrm S_n$ and $\sigma\in\mathrm{Sym}(\mathbb N)$. Let $\bar R_n$ be the subalgebra of ($\mathrm S_n$-)symmetric polynomials in $R_n$, i.e.,
$$ \bar R_n=\{f\in R_n\mid\tau(f)=f\ \text{for each}\ \tau\in\mathrm S_n\}. $$
An ideal $I$ in $\bar R_n$ is called $\mathrm{Sym}(\mathbb N)$-invariant if $\sigma(I)=I$ for each $\sigma\in\mathrm{Sym}(\mathbb N)$. In 1992, the second author proved that if $\mathrm{char}(K)=0$ or $\mathrm{char}(K)=p>n$, then every $\mathrm{Sym}(\mathbb N)$-invariant ideal in $\bar R_n$ is finitely generated (as such). In this note, we prove that this is not the case if $\mathrm{char}(K)=p\le n$. We also survey some results about $\mathrm{Sym}(\mathbb N)$-invariant ideals in polynomial algebras and some related topics.
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 206, Issue 5, Pages 505–510
DOI: https://doi.org/10.1007/s10958-015-2329-1
Bibliographic databases:
Document Type: Article
UDC: 512.552.2+512.552.3
Language: Russian
Citation: E. A. da Costa, A. N. Krasilnikov, “Symmetric polynomials and nonfinitely generated $\mathrm{Sym}(\mathbb N)$-invariant ideals”, Fundam. Prikl. Mat., 18:3 (2013), 69–76; J. Math. Sci., 206:5 (2015), 505–510
Citation in format AMSBIB
\Bibitem{Da Kra13}
\by E.~A.~da Costa, A.~N.~Krasilnikov
\paper Symmetric polynomials and nonfinitely generated $\mathrm{Sym}(\mathbb N)$-invariant ideals
\jour Fundam. Prikl. Mat.
\yr 2013
\vol 18
\issue 3
\pages 69--76
\mathnet{http://mi.mathnet.ru/fpm1517}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3431803}
\transl
\jour J. Math. Sci.
\yr 2015
\vol 206
\issue 5
\pages 505--510
\crossref{https://doi.org/10.1007/s10958-015-2329-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953359746}
Linking options:
  • https://www.mathnet.ru/eng/fpm1517
  • https://www.mathnet.ru/eng/fpm/v18/i3/p69
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:276
    Full-text PDF :119
    References:47
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024