Loading [MathJax]/jax/output/CommonHTML/jax.js
Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2013, Volume 18, Issue 2, Pages 147–152 (Mi fpm1505)  

This article is cited in 8 scientific papers (total in 8 papers)

Computation of the longest segment of a given direction in a simplex

M. V. Nevskii

P. G. Demidov Yaroslavl State University, Yaroslavl, Russia
Full-text PDF (103 kB) Citations (8)
References:
Abstract: Let S be a nondegenerate simplex in Rn and let v be a nonzero n-dimensional vector. We give the computational formulas for the length and endpoints of the longest segment in S parallel to v.
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 203, Issue 6, Pages 851–854
DOI: https://doi.org/10.1007/s10958-014-2175-6
Bibliographic databases:
Document Type: Article
UDC: 514.17+517.51
Language: Russian
Citation: M. V. Nevskii, “Computation of the longest segment of a given direction in a simplex”, Fundam. Prikl. Mat., 18:2 (2013), 147–152; J. Math. Sci., 203:6 (2014), 851–854
Citation in format AMSBIB
\Bibitem{Nev13}
\by M.~V.~Nevskii
\paper Computation of the longest segment of a~given direction in a~simplex
\jour Fundam. Prikl. Mat.
\yr 2013
\vol 18
\issue 2
\pages 147--152
\mathnet{http://mi.mathnet.ru/fpm1505}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3431791}
\transl
\jour J. Math. Sci.
\yr 2014
\vol 203
\issue 6
\pages 851--854
\crossref{https://doi.org/10.1007/s10958-014-2175-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922076775}
Linking options:
  • https://www.mathnet.ru/eng/fpm1505
  • https://www.mathnet.ru/eng/fpm/v18/i2/p147
  • This publication is cited in the following 8 articles:
    1. M. V. Nevskii, “On Properties of a Regular Simplex Inscribed into a Ball”, Aut. Control Comp. Sci., 56:7 (2022), 778  crossref
    2. M. V. Nevskii, “O svoistvakh pravilnogo simpleksa, vpisannogo v shar”, Model. i analiz inform. sistem, 28:2 (2021), 186–197  mathnet  crossref
    3. M. Nevskii, A. Ukhalov, “Perfect simplices in $\mathbb{R}^5$”, Beitr. Algebr. Geom., 59:3 (2018), 501–521  crossref  mathscinet  zmath  isi  scopus
    4. M. V. Nevskii, A. Yu. Ukhalov, “Novye otsenki chislovykh velichin, svyazannykh s simpleksom”, Model. i analiz inform. sistem, 24:1 (2017), 94–110  mathnet  crossref  mathscinet  elib
    5. M. V. Nevskii, A. Yu. Ukhalov, “On $n$-dimensional simplices satisfying inclusions $S\subset [0,1]^n\subset nS$”, Automatic Control and Computer Sciences, 52:7 (2018), 667–679  mathnet  crossref  crossref  elib
    6. M. V. Nevskii, A. Yu. Ukhalov, “On numerical characteristics of a simplex and their estimates”, Autom. Control Comp. Sci., 51:7 (2017), 757–769  crossref  isi  scopus
    7. M. V. Nevskii, A. Yu. Ukhalov, “New estimates of numerical values related to a simplex”, Autom. Control Comp. Sci., 51:7 (2017), 770–782  crossref  isi  scopus
    8. M. V. Nevskii, A. Yu. Ukhalov, “O chislovykh kharakteristikakh simpleksa i ikh otsenkakh”, Model. i analiz inform. sistem, 23:5 (2016), 603–619  mathnet  crossref  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:328
    Full-text PDF :144
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025