|
Fundamentalnaya i Prikladnaya Matematika, 2013, Volume 18, Issue 2, Pages 147–152
(Mi fpm1505)
|
|
|
|
This article is cited in 8 scientific papers (total in 8 papers)
Computation of the longest segment of a given direction in a simplex
M. V. Nevskii P. G. Demidov Yaroslavl State University, Yaroslavl, Russia
Abstract:
Let $S$ be a nondegenerate simplex in $\mathbb R^n$ and let $v$ be a nonzero $n$-dimensional vector. We give the computational formulas for the length and endpoints of the longest segment in $S$ parallel to $v$.
Citation:
M. V. Nevskii, “Computation of the longest segment of a given direction in a simplex”, Fundam. Prikl. Mat., 18:2 (2013), 147–152; J. Math. Sci., 203:6 (2014), 851–854
Linking options:
https://www.mathnet.ru/eng/fpm1505 https://www.mathnet.ru/eng/fpm/v18/i2/p147
|
Statistics & downloads: |
Abstract page: | 296 | Full-text PDF : | 135 | References: | 47 | First page: | 1 |
|