Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2013, Volume 18, Issue 2, Pages 95–103 (Mi fpm1501)  

This article is cited in 5 scientific papers (total in 5 papers)

$k$-neighborly faces of the Boolean quadric polytopes

A. N. Maksimenko

P. G. Demidov Yaroslavl State University, Yaroslavl, Russia
Full-text PDF (159 kB) Citations (5)
References:
Abstract: The Boolean quadric polytope (or correlation polytope) is the convex hull
$$ \operatorname{BQP}(n)=\operatorname{conv}\{x=(x_{ij})\in\{0,1\}^{n(n+1)/2}\mid x_{ij}=x_{ii}x_{jj},\ 1\le i\le j\le n\}. $$
The number of its vertices is $2^n$, i.e., superpolynomial in the dimension $d=n(n+1)/2$. In 1992 M. Deza, M. Laurent, and S. Poljak proved that $\operatorname{BQP}(n)$ is $3$-neighborly, i.e., every three vertices of $\operatorname{BQP}(n)$ form a face of this polytope. By analogy with the Boolean quadric polytopes, we consider Boolean $p$-power polytopes $\operatorname{BQP}(n,p)$. For $p=2$, $\operatorname{BQP}(n,p)=\operatorname{BQP}(n)$. For $p=1$, $\operatorname{BQP}(n,p)$ is $n$-dimensional $0/1$-cube. It is shown that $\operatorname{BQP}(n,p)$ is $s$-neighborly for $s\le p+\lfloor p/2\rfloor$. For $k\ge2m$, $m\in\mathbb N$, we prove that the polytope $\operatorname{BQP}(k,2m)$ is linearly isomorphic to a face of $\operatorname{BQP}(n)$ for some $n=\Theta\left(\binom km\right)$. Hence, for every fixed $s\le3\lfloor\log_2 n/2\rfloor$, $\operatorname{BQP}(n)$ has $s$-neighborly face with superpolynomial number $2^{\Theta(n^{1/\lceil s/3\rceil})}$ of vertices.
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 203, Issue 6, Pages 816–822
DOI: https://doi.org/10.1007/s10958-014-2171-x
Bibliographic databases:
Document Type: Article
UDC: 519.854.33+514.172.45
Language: Russian
Citation: A. N. Maksimenko, “$k$-neighborly faces of the Boolean quadric polytopes”, Fundam. Prikl. Mat., 18:2 (2013), 95–103; J. Math. Sci., 203:6 (2014), 816–822
Citation in format AMSBIB
\Bibitem{Mak13}
\by A.~N.~Maksimenko
\paper $k$-neighborly faces of the Boolean quadric polytopes
\jour Fundam. Prikl. Mat.
\yr 2013
\vol 18
\issue 2
\pages 95--103
\mathnet{http://mi.mathnet.ru/fpm1501}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3431787}
\transl
\jour J. Math. Sci.
\yr 2014
\vol 203
\issue 6
\pages 816--822
\crossref{https://doi.org/10.1007/s10958-014-2171-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922076392}
Linking options:
  • https://www.mathnet.ru/eng/fpm1501
  • https://www.mathnet.ru/eng/fpm/v18/i2/p95
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024