Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2013, Volume 18, Issue 2, Pages 35–51 (Mi fpm1497)  

This article is cited in 1 scientific paper (total in 1 paper)

Steiner ratio for the Hadamard surfaces of curvature at most $k<0$

E. A. Zavalnyuk

M. V. Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (221 kB) Citations (1)
References:
Abstract: In this paper, the Hadamard surfaces of curvature at most $k$ are investigated, which are a particular case of Alexandrov surfaces. It was shown that the total angle at the points of an Hadamard surface is not less than $2\pi$. The Steiner ratio of an Hadamard surface was obtained for the case where the surface is unbounded and $k<0$.
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 203, Issue 6, Pages 777–788
DOI: https://doi.org/10.1007/s10958-014-2167-6
Bibliographic databases:
Document Type: Article
UDC: 514.177.2+515.122.23
Language: Russian
Citation: E. A. Zavalnyuk, “Steiner ratio for the Hadamard surfaces of curvature at most $k<0$”, Fundam. Prikl. Mat., 18:2 (2013), 35–51; J. Math. Sci., 203:6 (2014), 777–788
Citation in format AMSBIB
\Bibitem{Zav13}
\by E.~A.~Zavalnyuk
\paper Steiner ratio for the Hadamard surfaces of curvature at most~$k<0$
\jour Fundam. Prikl. Mat.
\yr 2013
\vol 18
\issue 2
\pages 35--51
\mathnet{http://mi.mathnet.ru/fpm1497}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3431783}
\transl
\jour J. Math. Sci.
\yr 2014
\vol 203
\issue 6
\pages 777--788
\crossref{https://doi.org/10.1007/s10958-014-2167-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922076490}
Linking options:
  • https://www.mathnet.ru/eng/fpm1497
  • https://www.mathnet.ru/eng/fpm/v18/i2/p35
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:281
    Full-text PDF :150
    References:42
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024