Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2013, Volume 18, Issue 1, Pages 35–44 (Mi fpm1486)  

An example of two cardinals that are equivalent in the $n$-order logic and not equivalent in the $(n+1)$-order logic

V. A. Bragin, E. I. Bunina

Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: It is proved that the property of two models to be equivalent in the $n$th order logic is definable in the $(n+1)$th order logic. Basing on this fact, there is given an (nonconstructive) “example” of two $n$-order equivalent cardinal numbers that are not $(n+1)$-order equivalent.
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 201, Issue 4, Pages 431–437
DOI: https://doi.org/10.1007/s10958-014-2002-0
Bibliographic databases:
Document Type: Article
UDC: 510.67+512.563+512.54
Language: Russian
Citation: V. A. Bragin, E. I. Bunina, “An example of two cardinals that are equivalent in the $n$-order logic and not equivalent in the $(n+1)$-order logic”, Fundam. Prikl. Mat., 18:1 (2013), 35–44; J. Math. Sci., 201:4 (2014), 431–437
Citation in format AMSBIB
\Bibitem{BraBun13}
\by V.~A.~Bragin, E.~I.~Bunina
\paper An example of two cardinals that are equivalent in the $n$-order logic and not equivalent in the $(n+1)$-order logic
\jour Fundam. Prikl. Mat.
\yr 2013
\vol 18
\issue 1
\pages 35--44
\mathnet{http://mi.mathnet.ru/fpm1486}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3431762}
\transl
\jour J. Math. Sci.
\yr 2014
\vol 201
\issue 4
\pages 431--437
\crossref{https://doi.org/10.1007/s10958-014-2002-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84906091076}
Linking options:
  • https://www.mathnet.ru/eng/fpm1486
  • https://www.mathnet.ru/eng/fpm/v18/i1/p35
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:324
    Full-text PDF :134
    References:43
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024