Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2012, Volume 17, Issue 6, Pages 65–173 (Mi fpm1450)  

This article is cited in 19 scientific papers (total in 19 papers)

The length function and matrix algebras

O. V. Markova

M. V. Lomonosov Moscow State University
References:
Abstract: By the length of a finite system of generators for a finite-dimensional associative algebra over an arbitrary field we mean the least positive integer $k$ such that the words of length not exceeding $k$ span this algebra (as a vector space). The maximum length for the systems of generators of an algebra is referred to as the length of the algebra. In the present paper, we study the main ring-theoretical properties of the length function: the behavior of the length under unity adjunction, direct sum of algebras, passing to subalgebras and homomorphic images. We give an upper bound for the length of the algebra as a function of the nilpotency index of its Jacobson radical and the length of the quotient algebra. We also provide examples of the length computation for certain algebras, in particular, for the following classical matrix subalgebras: the algebra of upper triangular matrices, the algebra of diagonal matrices, the Schur algebra, Courter's algebra, and for the classes of local and commutative algebras.
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 193, Issue 5, Pages 687–768
DOI: https://doi.org/10.1007/s10958-013-1495-2
Bibliographic databases:
Document Type: Article
UDC: 512.552+512.643
Language: Russian
Citation: O. V. Markova, “The length function and matrix algebras”, Fundam. Prikl. Mat., 17:6 (2012), 65–173; J. Math. Sci., 193:5 (2013), 687–768
Citation in format AMSBIB
\Bibitem{Mar12}
\by O.~V.~Markova
\paper The length function and matrix algebras
\jour Fundam. Prikl. Mat.
\yr 2012
\vol 17
\issue 6
\pages 65--173
\mathnet{http://mi.mathnet.ru/fpm1450}
\transl
\jour J. Math. Sci.
\yr 2013
\vol 193
\issue 5
\pages 687--768
\crossref{https://doi.org/10.1007/s10958-013-1495-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899412588}
Linking options:
  • https://www.mathnet.ru/eng/fpm1450
  • https://www.mathnet.ru/eng/fpm/v17/i6/p65
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:495
    Full-text PDF :286
    References:57
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024