Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2012, Volume 17, Issue 3, Pages 61–66 (Mi fpm1413)  

This article is cited in 6 scientific papers (total in 6 papers)

Every zero adequate ring is an exchange ring

B. V. Zabavsky, S. I. Bilavska

Ivan Franko National University of L'viv
Full-text PDF (86 kB) Citations (6)
References:
Abstract: It is proved that if $R$ is a commutative ring in which zero is an adequate element, then $R$ is an exchange ring and that every zero adequate ring is an exchange ring. There is a new description of adequate rings; this is an answer to questions formulated by Larsen, Lewis, and Shores.
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 187, Issue 2, Pages 153–156
DOI: https://doi.org/10.1007/s10958-012-1058-y
Bibliographic databases:
Document Type: Article
UDC: 512.552
Language: Russian
Citation: B. V. Zabavsky, S. I. Bilavska, “Every zero adequate ring is an exchange ring”, Fundam. Prikl. Mat., 17:3 (2012), 61–66; J. Math. Sci., 187:2 (2012), 153–156
Citation in format AMSBIB
\Bibitem{ZabBil12}
\by B.~V.~Zabavsky, S.~I.~Bilavska
\paper Every zero adequate ring is an exchange ring
\jour Fundam. Prikl. Mat.
\yr 2012
\vol 17
\issue 3
\pages 61--66
\mathnet{http://mi.mathnet.ru/fpm1413}
\transl
\jour J. Math. Sci.
\yr 2012
\vol 187
\issue 2
\pages 153--156
\crossref{https://doi.org/10.1007/s10958-012-1058-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84867526524}
Linking options:
  • https://www.mathnet.ru/eng/fpm1413
  • https://www.mathnet.ru/eng/fpm/v17/i3/p61
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025