|
Fundamentalnaya i Prikladnaya Matematika, 2012, Volume 17, Issue 3, Pages 25–37
(Mi fpm1410)
|
|
|
|
Modules over integer group rings of locally soluble groups with minimax restriction
O. Yu. Dashkova Dnepropetrovsk National University, Ukraine
Abstract:
Let $\mathbb Z$ be the ring of integers, $A$ be a $\mathbb ZG$-module, where $A/C_A(G)$ is not a minimax $\mathbb Z$-module, $C_G(A)=1$, and $G$ is a locally soluble group. Let $L_\mathrm{nm}(G)$ be the system of all subgroups $H\leq G$ such that quotient modules $A/C_A(H)$ are not minimax $\mathbb Z$-modules. The author studies $\mathbb ZG$-modules $A$ such that $L_\mathrm{nm}(G)$ satisfies the minimal condition as an ordered set. It is proved that a locally soluble group $G$ with these conditions is soluble. The structure of the group $G$ is described.
Citation:
O. Yu. Dashkova, “Modules over integer group rings of locally soluble groups with minimax restriction”, Fundam. Prikl. Mat., 17:3 (2012), 25–37; J. Math. Sci., 187:2 (2012), 129–137
Linking options:
https://www.mathnet.ru/eng/fpm1410 https://www.mathnet.ru/eng/fpm/v17/i3/p25
|
Statistics & downloads: |
Abstract page: | 373 | Full-text PDF : | 130 | References: | 66 | First page: | 2 |
|