|
Fundamentalnaya i Prikladnaya Matematika, 2012, Volume 17, Issue 2, Pages 183–199
(Mi fpm1407)
|
|
|
|
Categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$- and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules
A. V. Petukhov M. V. Lomonosov Moscow State University
Abstract:
Let $\mathfrak g$ be a reductive Lie algebra over $\mathbb C$ and $\mathfrak k\subset\mathfrak g$ be a reductive in $\mathfrak g$ subalgebra. We call a $\mathfrak g$-module $M$ a $(\mathfrak g,\mathfrak k)$-module whenever $M$ is a direct sum of finite-dimensional $\mathfrak k$-modules. We call a $(\mathfrak g,\mathfrak k)$-module $M$ bounded if there exists $C_M\in\mathbb Z_{\ge0}$ such that for any simple finite-dimensional $\mathfrak k$-module $E$ the dimension of the $E$-isotypic component is not more than $C_M\dim E$. Bounded $(\mathfrak g,\mathfrak k)$-modules form a subcategory of the category of $\mathfrak g$-modules. Let $V$ be a finite-dimensional vector space. We prove that the categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$-modules and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules are isomorphic to the direct sum of countably many copies of the category of representations of some explicitly described quiver with relations under some mild assumptions on the dimension of $V$.
Citation:
A. V. Petukhov, “Categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$- and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules”, Fundam. Prikl. Mat., 17:2 (2012), 183–199; J. Math. Sci., 186:4 (2012), 655–666
Linking options:
https://www.mathnet.ru/eng/fpm1407 https://www.mathnet.ru/eng/fpm/v17/i2/p183
|
|