Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2012, Volume 17, Issue 2, Pages 183–199 (Mi fpm1407)  

Categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$- and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules

A. V. Petukhov

M. V. Lomonosov Moscow State University
References:
Abstract: Let $\mathfrak g$ be a reductive Lie algebra over $\mathbb C$ and $\mathfrak k\subset\mathfrak g$ be a reductive in $\mathfrak g$ subalgebra. We call a $\mathfrak g$-module $M$$(\mathfrak g,\mathfrak k)$-module whenever $M$ is a direct sum of finite-dimensional $\mathfrak k$-modules. We call a $(\mathfrak g,\mathfrak k)$-module $M$ bounded if there exists $C_M\in\mathbb Z_{\ge0}$ such that for any simple finite-dimensional $\mathfrak k$-module $E$ the dimension of the $E$-isotypic component is not more than $C_M\dim E$. Bounded $(\mathfrak g,\mathfrak k)$-modules form a subcategory of the category of $\mathfrak g$-modules. Let $V$ be a finite-dimensional vector space. We prove that the categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$-modules and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules are isomorphic to the direct sum of countably many copies of the category of representations of some explicitly described quiver with relations under some mild assumptions on the dimension of $V$.
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 186, Issue 4, Pages 655–666
DOI: https://doi.org/10.1007/s10958-012-1012-z
Bibliographic databases:
Document Type: Article
UDC: 512.552.8
Language: Russian
Citation: A. V. Petukhov, “Categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$- and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules”, Fundam. Prikl. Mat., 17:2 (2012), 183–199; J. Math. Sci., 186:4 (2012), 655–666
Citation in format AMSBIB
\Bibitem{Pet12}
\by A.~V.~Petukhov
\paper Categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$- and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules
\jour Fundam. Prikl. Mat.
\yr 2012
\vol 17
\issue 2
\pages 183--199
\mathnet{http://mi.mathnet.ru/fpm1407}
\transl
\jour J. Math. Sci.
\yr 2012
\vol 186
\issue 4
\pages 655--666
\crossref{https://doi.org/10.1007/s10958-012-1012-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866491748}
Linking options:
  • https://www.mathnet.ru/eng/fpm1407
  • https://www.mathnet.ru/eng/fpm/v17/i2/p183
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024