Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2012, Volume 17, Issue 2, Pages 75–85 (Mi fpm1401)  

This article is cited in 6 scientific papers (total in 6 papers)

When are all group codes of a noncommutative group Abelian (a computational approach)?

C. García Pilladoa, S. Gonzáleza, V. T. Markovb, C. Martíneza, A. A. Nechaevb

a Universidad de Oviedo, Spain
b M. V. Lomonosov Moscow State University
Full-text PDF (136 kB) Citations (6)
References:
Abstract: Let $G$ be a finite group and $F$ be a field. Any linear code over $F$ that is permutation equivalent to some code defined by an ideal of the group ring $FG$ will be called a $G$-code. The theory of these “abstract” group codes was developed in 2009. A code is called Abelian if it is an $A$-code for some Abelian group $A$. Some conditions were given that all $G$-codes for some group $G$ are Abelian but no examples of non-Abelian group codes were known at that time. We use a computer algebra system GAP to show that all $G$-codes over any field are Abelian if $|G|<128$ and $|G|\notin\{24,48,54,60,64,72,96,108,120\}$, but for $F=\mathbb F_5$ and $G=\mathrm S_4$ there exist non-Abelian $G$-codes over $F$. It is also shown that the existence of left non-Abelian group codes for a given group depends in general on the field of coefficients, while for (two-sided) group codes the corresponding question remains open.
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 186, Issue 4, Pages 578–585
DOI: https://doi.org/10.1007/s10958-012-1006-x
Bibliographic databases:
Document Type: Article
UDC: 519.725+512.552.7
Language: Russian
Citation: C. García Pillado, S. González, V. T. Markov, C. Martínez, A. A. Nechaev, “When are all group codes of a noncommutative group Abelian (a computational approach)?”, Fundam. Prikl. Mat., 17:2 (2012), 75–85; J. Math. Sci., 186:4 (2012), 578–585
Citation in format AMSBIB
\Bibitem{GarGonMar12}
\by C.~Garc{\'\i}a Pillado, S.~Gonz\'alez, V.~T.~Markov, C.~Mart{\'\i}nez, A.~A.~Nechaev
\paper When are all group codes of a~noncommutative group Abelian (a~computational approach)?
\jour Fundam. Prikl. Mat.
\yr 2012
\vol 17
\issue 2
\pages 75--85
\mathnet{http://mi.mathnet.ru/fpm1401}
\transl
\jour J. Math. Sci.
\yr 2012
\vol 186
\issue 4
\pages 578--585
\crossref{https://doi.org/10.1007/s10958-012-1006-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866507992}
Linking options:
  • https://www.mathnet.ru/eng/fpm1401
  • https://www.mathnet.ru/eng/fpm/v17/i2/p75
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:567
    Full-text PDF :191
    References:73
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024