Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2007, Volume 13, Issue 1, Pages 229–233 (Mi fpm14)  

This article is cited in 6 scientific papers (total in 6 papers)

Abelian groups as endomorphic modules over their endomorphism ring

D. S. Chistyakova, O. V. Ljubimtsevb

a Nizhny Novgorod State Pedagogical University
b Nizhny Novgorod State University of Architecture and Civil Engineering
Full-text PDF (95 kB) Citations (6)
References:
Abstract: Let $R$ be an associative ring with a unit and $N$ be a left $R$-module. The set $M_R(N)=\{f\colon N\to N\mid f(rx)=rf(x),\ r\in R,\ x\in N\}$ is a near-ring with respect to the operations of addition and composition and contains the ring $E_R(N)$ of all endomorphisms of the $R$-module $N$. The $R$-module $N$ is endomorphic if $M_R(N)=E_R(N)$. We call an Abelian group endomorphic if it is an endomorphic module over its endomorphism ring. In this paper, we find endomorphic Abelian groups in the classes of all separable torsion-free groups, torsion groups, almost completely decomposable torsion-free groups, and indecomposable torsion-free groups of rank 2.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 152, Issue 4, Pages 604–607
DOI: https://doi.org/10.1007/s10958-008-9075-6
Bibliographic databases:
UDC: 512.541
Language: Russian
Citation: D. S. Chistyakov, O. V. Ljubimtsev, “Abelian groups as endomorphic modules over their endomorphism ring”, Fundam. Prikl. Mat., 13:1 (2007), 229–233; J. Math. Sci., 152:4 (2008), 604–607
Citation in format AMSBIB
\Bibitem{ChiLju07}
\by D.~S.~Chistyakov, O.~V.~Ljubimtsev
\paper Abelian groups as endomorphic modules over their endomorphism ring
\jour Fundam. Prikl. Mat.
\yr 2007
\vol 13
\issue 1
\pages 229--233
\mathnet{http://mi.mathnet.ru/fpm14}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2322969}
\zmath{https://zbmath.org/?q=an:1151.20043}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 152
\issue 4
\pages 604--607
\crossref{https://doi.org/10.1007/s10958-008-9075-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51749087265}
Linking options:
  • https://www.mathnet.ru/eng/fpm14
  • https://www.mathnet.ru/eng/fpm/v13/i1/p229
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:391
    Full-text PDF :122
    References:55
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024