Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2012, Volume 17, Issue 1, Pages 127–141 (Mi fpm1392)  

This article is cited in 5 scientific papers (total in 5 papers)

Almost primitive elements of free nonassociative algebras of small ranks

A. V. Klimakov, A. A. Mikhalev

M. V. Lomonosov Moscow State University
Full-text PDF (205 kB) Citations (5)
References:
Abstract: Let $K$ be a field, $X=\{x_1,\dots,x_n\}$, and let $F(X)$ be the free nonassociative algebra over the field $K$ with the set $X$ of free generators. A. G. Kurosh proved that subalgebras of free nonassociative algebras are free. A subset $M$ of nonzero elements of the algebra $F(X)$ is said to be primitive if there is a set $Y$ of free generators of $F(X)$, $F(X)=F(Y)$, such that $M\subseteq Y$ (in this case we have $|Y|=|X|=n$). A nonzero element $u$ of the free algebra $F(X)$ is said to be an almost primitive if $u$ is not a primitive element of the algebra $F(X)$, but $u$ is a primitive element of any proper subalgebra of $F(X)$ that contains it. In this article, for free nonassociative algebras of rank 1 and 2 criteria for homogeneous elements to be almost primitive are obtained and algorithms to recognize homogeneous almost primitive elements are constructed. New examples of almost primitive elements of free nonassociative algebras of rank 3 are constructed.
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 185, Issue 3, Pages 430–439
DOI: https://doi.org/10.1007/s10958-012-0925-x
Bibliographic databases:
Document Type: Article
UDC: 512.554
Language: Russian
Citation: A. V. Klimakov, A. A. Mikhalev, “Almost primitive elements of free nonassociative algebras of small ranks”, Fundam. Prikl. Mat., 17:1 (2012), 127–141; J. Math. Sci., 185:3 (2012), 430–439
Citation in format AMSBIB
\Bibitem{KliMik12}
\by A.~V.~Klimakov, A.~A.~Mikhalev
\paper Almost primitive elements of free nonassociative algebras of small ranks
\jour Fundam. Prikl. Mat.
\yr 2012
\vol 17
\issue 1
\pages 127--141
\mathnet{http://mi.mathnet.ru/fpm1392}
\transl
\jour J. Math. Sci.
\yr 2012
\vol 185
\issue 3
\pages 430--439
\crossref{https://doi.org/10.1007/s10958-012-0925-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866324416}
Linking options:
  • https://www.mathnet.ru/eng/fpm1392
  • https://www.mathnet.ru/eng/fpm/v17/i1/p127
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:442
    Full-text PDF :156
    References:63
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024