Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2012, Volume 17, Issue 1, Pages 23–32 (Mi fpm1387)  

This article is cited in 1 scientific paper (total in 1 paper)

Monotone path-connectedness of $R$-weakly convex sets in the space $C(Q)$

A. R. Alimov

M. V. Lomonosov Moscow State University
Full-text PDF (149 kB) Citations (1)
References:
Abstract: A subset $M$ of a normed linear space $X$ is said to be $R$-weakly convex ($R>0$ is fixed) if the intersection $(D_R(x,y)\setminus\{x,y\})\cap M$ is nonempty for all $x,y\in M$, $0<\|x-y\|<2R$. Here $D_R(x,y)$ is the intersection of all the balls of radius $R$ that contain $x,y$. The paper is concerned with connectedness of $R$-weakly convex sets in $C(Q)$-spaces. It will be shown that any $R$-weakly convex subset $M$ of $C(Q)$ is locally $\mathrm m$-connected (locally Menger-connected) and each connected component of a boundedly compact $R$-weakly convex subset $M$ of $C(Q)$ is monotone path-connected and is a sun in $C(Q)$. Also, we show that a boundedly compact subset $M$ of $C(Q)$ is $R$-weakly convex for some $R>0$ if and only if $M$ is a disjoint union of monotonically path-connected suns in $C(Q)$, the Hausdorff distance between each pair of the components of $M$ being at least $2R$.
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 185, Issue 3, Pages 360–366
DOI: https://doi.org/10.1007/s10958-012-0920-2
Bibliographic databases:
Document Type: Article
UDC: 517.982.252+517.982.256
Language: Russian
Citation: A. R. Alimov, “Monotone path-connectedness of $R$-weakly convex sets in the space $C(Q)$”, Fundam. Prikl. Mat., 17:1 (2012), 23–32; J. Math. Sci., 185:3 (2012), 360–366
Citation in format AMSBIB
\Bibitem{Ali12}
\by A.~R.~Alimov
\paper Monotone path-connectedness of $R$-weakly convex sets in the space $C(Q)$
\jour Fundam. Prikl. Mat.
\yr 2012
\vol 17
\issue 1
\pages 23--32
\mathnet{http://mi.mathnet.ru/fpm1387}
\transl
\jour J. Math. Sci.
\yr 2012
\vol 185
\issue 3
\pages 360--366
\crossref{https://doi.org/10.1007/s10958-012-0920-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866329641}
Linking options:
  • https://www.mathnet.ru/eng/fpm1387
  • https://www.mathnet.ru/eng/fpm/v17/i1/p23
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024