Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2012, Volume 17, Issue 1, Pages 3–21 (Mi fpm1386)  

This article is cited in 13 scientific papers (total in 13 papers)

On singular points of solutions of linear differential systems with polynomial coefficients

S. A. Abramov, D. E. Khmelnov

Dorodnitsyn Computing Centre of the Russian Academy of Sciences
References:
Abstract: We consider systems of linear ordinary differential equations containing $m$ unknown functions of a single variable $x$. The coefficients of the systems are polynomials over a field $k$ of characteristic $0$. Each of the systems consists of $m$ equations independent over $k[x,d/dx]$. The equations are of arbitrary orders. We propose a computer algebra algorithm that, given a system $S$ of this form, constructs a polynomial $d(x)\in k[x]\setminus\{0\}$ such that if $S$ possesses a solution in $\overline k((x-\alpha))^m$ for some $\alpha\in\overline k$ and a component of this solution has a nonzero polar part, then $d(\alpha)=0$. In the case where $k\subseteq\mathbb C$ and $S$ possesses an analytic solution having a singularity of an arbitrary type (not necessarily a pole) at $\alpha$, the equality $d(\alpha)=0$ is also satisfied.
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 185, Issue 3, Pages 347–359
DOI: https://doi.org/10.1007/s10958-012-0919-8
Bibliographic databases:
Document Type: Article
UDC: 512.628.2
Language: Russian
Citation: S. A. Abramov, D. E. Khmelnov, “On singular points of solutions of linear differential systems with polynomial coefficients”, Fundam. Prikl. Mat., 17:1 (2012), 3–21; J. Math. Sci., 185:3 (2012), 347–359
Citation in format AMSBIB
\Bibitem{AbrKhm12}
\by S.~A.~Abramov, D.~E.~Khmelnov
\paper On singular points of solutions of linear differential systems with polynomial coefficients
\jour Fundam. Prikl. Mat.
\yr 2012
\vol 17
\issue 1
\pages 3--21
\mathnet{http://mi.mathnet.ru/fpm1386}
\transl
\jour J. Math. Sci.
\yr 2012
\vol 185
\issue 3
\pages 347--359
\crossref{https://doi.org/10.1007/s10958-012-0919-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866320189}
Linking options:
  • https://www.mathnet.ru/eng/fpm1386
  • https://www.mathnet.ru/eng/fpm/v17/i1/p3
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:542
    Full-text PDF :208
    References:79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024