|
Fundamentalnaya i Prikladnaya Matematika, 2010, Volume 16, Issue 8, Pages 5–16
(Mi fpm1373)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Properties of finite unrefinable chains of ring topologies
V. I. Arnautov Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
Abstract:
Let $R(+,\cdot)$ be a nilpotent ring and $(\mathfrak M,<)$ be the lattice of all ring topologies on $R(+,\cdot)$ or the lattice of all such ring topologies on $R(+,\cdot)$ in each of which the ring $R$ possesses a basis of neighborhoods of zero consisting of subgroups. Let $\tau$ and $\tau'$ be ring topologies from $\mathfrak M$ such that $\tau=\tau_0\prec_\mathfrak M\tau_1\prec_\mathfrak M\dots\prec_\mathfrak M\tau_n=\tau'$. Then $k\leq n$ for every chain $\tau=\tau'_0<\tau'_1<\dots<\tau'_k=\tau'$ of topologies from $\mathfrak M$, and also $n=k$ if and only if $\tau'_i\prec_\mathfrak M\tau'_{i+1}$ for all $0\leq i<k$.
Citation:
V. I. Arnautov, “Properties of finite unrefinable chains of ring topologies”, Fundam. Prikl. Mat., 16:8 (2010), 5–16; J. Math. Sci., 185:2 (2012), 176–183
Linking options:
https://www.mathnet.ru/eng/fpm1373 https://www.mathnet.ru/eng/fpm/v16/i8/p5
|
Statistics & downloads: |
Abstract page: | 321 | Full-text PDF : | 114 | References: | 51 | First page: | 2 |
|