Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2010, Volume 16, Issue 7, Pages 39–47 (Mi fpm1363)  

On a property of Abelian groups related to direct sums and products

O. M. Babanskaya (Katerinchuk), P. A. Krylov

Tomsk State University
References:
Abstract: Let $T$ be an infinite set of prime numbers, $\mathcal M$ be a set of groups $\{\mathbb Z(p)\mid p \in T\}$. An Abelian group $A$ is said to be $\mathcal M$-large if
$$ \mathrm{Hom}\Bigl(A,\bigoplus_{p\in T}\mathbb Z(p)\Bigr)=\mathrm{Hom}\Bigl(A,\prod_{p\in T}\mathbb Z(p)\Bigr). $$
This paper presents a characterization of $\mathcal M$-large torsion-free and mixed groups.
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 183, Issue 3, Pages 299–304
DOI: https://doi.org/10.1007/s10958-012-0814-3
Bibliographic databases:
Document Type: Article
UDC: 512.541
Language: Russian
Citation: O. M. Babanskaya (Katerinchuk), P. A. Krylov, “On a property of Abelian groups related to direct sums and products”, Fundam. Prikl. Mat., 16:7 (2010), 39–47; J. Math. Sci., 183:3 (2012), 299–304
Citation in format AMSBIB
\Bibitem{BabKry10}
\by O.~M.~Babanskaya (Katerinchuk), P.~A.~Krylov
\paper On a~property of Abelian groups related to direct sums and products
\jour Fundam. Prikl. Mat.
\yr 2010
\vol 16
\issue 7
\pages 39--47
\mathnet{http://mi.mathnet.ru/fpm1363}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2846221}
\transl
\jour J. Math. Sci.
\yr 2012
\vol 183
\issue 3
\pages 299--304
\crossref{https://doi.org/10.1007/s10958-012-0814-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84861458978}
Linking options:
  • https://www.mathnet.ru/eng/fpm1363
  • https://www.mathnet.ru/eng/fpm/v16/i7/p39
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:460
    Full-text PDF :136
    References:71
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024