|
Fundamentalnaya i Prikladnaya Matematika, 2010, Volume 16, Issue 7, Pages 39–47
(Mi fpm1363)
|
|
|
|
On a property of Abelian groups related to direct sums and products
O. M. Babanskaya (Katerinchuk), P. A. Krylov Tomsk State University
Abstract:
Let $T$ be an infinite set of prime numbers, $\mathcal M$ be a set of groups $\{\mathbb Z(p)\mid p \in T\}$. An Abelian group $A$ is said to be $\mathcal M$-large if
$$
\mathrm{Hom}\Bigl(A,\bigoplus_{p\in T}\mathbb Z(p)\Bigr)=\mathrm{Hom}\Bigl(A,\prod_{p\in T}\mathbb Z(p)\Bigr).
$$
This paper presents a characterization of $\mathcal M$-large torsion-free and mixed groups.
Citation:
O. M. Babanskaya (Katerinchuk), P. A. Krylov, “On a property of Abelian groups related to direct sums and products”, Fundam. Prikl. Mat., 16:7 (2010), 39–47; J. Math. Sci., 183:3 (2012), 299–304
Linking options:
https://www.mathnet.ru/eng/fpm1363 https://www.mathnet.ru/eng/fpm/v16/i7/p39
|
Statistics & downloads: |
Abstract page: | 460 | Full-text PDF : | 136 | References: | 71 | First page: | 2 |
|