|
Fundamentalnaya i Prikladnaya Matematika, 2010, Volume 16, Issue 6, Pages 167–172
(Mi fpm1358)
|
|
|
|
On the transcendence of moduli of the Jacobian elliptic functions
Ya. M. Kholyavka Ivan Franko National University of L'viv, Ukraine
Abstract:
Let $\mathrm{sn}_1z$ and $\mathrm{sn}_2z$ be the Jacobian elliptic functions of moduli $\varkappa_1$ and $\varkappa_2$, $0<\varkappa_1^2<1$, $0<\varkappa_2^2<1$, $\tau_1$ and $\tau_2$ be the values of the modular variable, $\theta_3(\tau_1)$ and $\theta_3(\tau_2)$ be the theta constants. In this paper, the set $\varkappa_1$, $\varkappa_2$, $\theta_3(\tau_1)$, and $\theta_3(\tau_2)$ is shown to contain a transcendental number, provided that $\tau_1/\tau_2$ is irrational.
Citation:
Ya. M. Kholyavka, “On the transcendence of moduli of the Jacobian elliptic functions”, Fundam. Prikl. Mat., 16:6 (2010), 167–172; J. Math. Sci., 182:4 (2012), 560–564
Linking options:
https://www.mathnet.ru/eng/fpm1358 https://www.mathnet.ru/eng/fpm/v16/i6/p167
|
|