Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2010, Volume 16, Issue 6, Pages 167–172 (Mi fpm1358)  

On the transcendence of moduli of the Jacobian elliptic functions

Ya. M. Kholyavka

Ivan Franko National University of L'viv, Ukraine
References:
Abstract: Let $\mathrm{sn}_1z$ and $\mathrm{sn}_2z$ be the Jacobian elliptic functions of moduli $\varkappa_1$ and $\varkappa_2$, $0<\varkappa_1^2<1$, $0<\varkappa_2^2<1$, $\tau_1$ and $\tau_2$ be the values of the modular variable, $\theta_3(\tau_1)$ and $\theta_3(\tau_2)$ be the theta constants. In this paper, the set $\varkappa_1$, $\varkappa_2$, $\theta_3(\tau_1)$, and $\theta_3(\tau_2)$ is shown to contain a transcendental number, provided that $\tau_1/\tau_2$ is irrational.
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 182, Issue 4, Pages 560–564
DOI: https://doi.org/10.1007/s10958-012-0759-6
Bibliographic databases:
Document Type: Article
UDC: 511.3
Language: Russian
Citation: Ya. M. Kholyavka, “On the transcendence of moduli of the Jacobian elliptic functions”, Fundam. Prikl. Mat., 16:6 (2010), 167–172; J. Math. Sci., 182:4 (2012), 560–564
Citation in format AMSBIB
\Bibitem{Kho10}
\by Ya.~M.~Kholyavka
\paper On the transcendence of moduli of the Jacobian elliptic functions
\jour Fundam. Prikl. Mat.
\yr 2010
\vol 16
\issue 6
\pages 167--172
\mathnet{http://mi.mathnet.ru/fpm1358}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2825524}
\transl
\jour J. Math. Sci.
\yr 2012
\vol 182
\issue 4
\pages 560--564
\crossref{https://doi.org/10.1007/s10958-012-0759-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84859486622}
Linking options:
  • https://www.mathnet.ru/eng/fpm1358
  • https://www.mathnet.ru/eng/fpm/v16/i6/p167
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024