Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2010, Volume 16, Issue 5, Pages 173–200 (Mi fpm1345)  

This article is cited in 1 scientific paper (total in 1 paper)

Algebraic relations for reciprocal sums of even terms in Fibonacci numbers

C. Elsnera, Sh. Shimomurab, I. Shiokawab

a FHDW — University of Applied Sciences, Germany
b Keio University, Japan
Full-text PDF (244 kB) Citations (1)
References:
Abstract: In this paper, we discuss the algebraic independence and algebraic relations, first, for reciprocal sums of even terms in Fibonacci numbers $\sum^\infty_{n=1} F_{2n}^{-2s}$, and second, for sums of evenly even and unevenly even types $\sum^\infty_{n=1}F^{-2s}_{4n}$, $\sum^\infty_{n=1}F^{-2s}_{4n-2}$. The numbers $\sum^\infty_{n=1}F_{4n-2}^{-2}$, $\sum^\infty_{n=1}F_{4n-2}^{-4}$, and $\sum^\infty_{n=1}F_{4n-2}^{-6}$ are shown to be algebraically independent, and each sum $\sum^\infty_{n=1}F^{-2s}_{4n-2}$ ($s\ge4$) is written as an explicit rational function of these three numbers over $\mathbb Q$. Similar results are obtained for various series of even type, including the reciprocal sums of Lucas numbers $\sum^\infty_{n=1}L_{2n}^{-p}$, $\sum^\infty_{n=1}L^{-p}_{4n}$, and $\sum^\infty_{n=1}L^{-p}_{4n-2}$.
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 180, Issue 5, Pages 650–671
DOI: https://doi.org/10.1007/s10958-012-0663-0
Bibliographic databases:
Document Type: Article
UDC: 511.4
Language: Russian
Citation: C. Elsner, Sh. Shimomura, I. Shiokawa, “Algebraic relations for reciprocal sums of even terms in Fibonacci numbers”, Fundam. Prikl. Mat., 16:5 (2010), 173–200; J. Math. Sci., 180:5 (2012), 650–671
Citation in format AMSBIB
\Bibitem{ElsShiShi10}
\by C.~Elsner, Sh.~Shimomura, I.~Shiokawa
\paper Algebraic relations for reciprocal sums of even terms in Fibonacci numbers
\jour Fundam. Prikl. Mat.
\yr 2010
\vol 16
\issue 5
\pages 173--200
\mathnet{http://mi.mathnet.ru/fpm1345}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2804900}
\elib{https://elibrary.ru/item.asp?id=16349308}
\transl
\jour J. Math. Sci.
\yr 2012
\vol 180
\issue 5
\pages 650--671
\crossref{https://doi.org/10.1007/s10958-012-0663-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855830738}
Linking options:
  • https://www.mathnet.ru/eng/fpm1345
  • https://www.mathnet.ru/eng/fpm/v16/i5/p173
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:374
    Full-text PDF :157
    References:28
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024