Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2010, Volume 16, Issue 3, Pages 205–226 (Mi fpm1328)  

Recursive expansions with respect to a chain of subspaces

A. V. Slovesnov

M. V. Lomonosov Moscow State University
References:
Abstract: In this work, recursive expansions in Hilbert space $H=L_2[0,1]$ are considered. We discuss a related notion of frames in finite-dimensional spaces. We also suggest a constructive approach to extend an arbitrary basis to obtain a tight frame. The algorithm of extending is applied to bases of a special form, whose Gram matrix is circulant. A construction of a chain of nested subspaces $\{V^n\}_{n=1}^\infty$ is given, and in its foundation lies an example of a function that can be expressed as a linear combination of its contractions and translations. The main result of the paper is the theorem that provides the uniform convergence of recursive Fourier series with respect to the chain $\{V^n\}_{n=1}^\infty$ for continuous functions.
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 177, Issue 6, Pages 915–929
DOI: https://doi.org/10.1007/s10958-011-0519-z
Bibliographic databases:
Document Type: Article
UDC: 517.518.8
Language: Russian
Citation: A. V. Slovesnov, “Recursive expansions with respect to a chain of subspaces”, Fundam. Prikl. Mat., 16:3 (2010), 205–226; J. Math. Sci., 177:6 (2011), 915–929
Citation in format AMSBIB
\Bibitem{Slo10}
\by A.~V.~Slovesnov
\paper Recursive expansions with respect to a~chain of subspaces
\jour Fundam. Prikl. Mat.
\yr 2010
\vol 16
\issue 3
\pages 205--226
\mathnet{http://mi.mathnet.ru/fpm1328}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2786538}
\elib{https://elibrary.ru/item.asp?id=16350335}
\transl
\jour J. Math. Sci.
\yr 2011
\vol 177
\issue 6
\pages 915--929
\crossref{https://doi.org/10.1007/s10958-011-0519-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052372189}
Linking options:
  • https://www.mathnet.ru/eng/fpm1328
  • https://www.mathnet.ru/eng/fpm/v16/i3/p205
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025