Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2010, Volume 16, Issue 3, Pages 193–203 (Mi fpm1327)  

Standard basis in the $T$-ideal formed by polynomial identities of triangular matrices

V. N. Latyshev

M. V. Lomonosov Moscow State University
References:
Abstract: We give the definition of a standard basis of a $T$-ideal of the free associative algebra over a field of zero characteristic and indicate some basis called canonical in the linear space of $n$-linear forms. Using this basis, we construct a standard basis in the $T$-ideal of identities satisfied by the algebra of upper triangular $(n\times n)$-matrices.
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 177, Issue 6, Pages 908–914
DOI: https://doi.org/10.1007/s10958-011-0518-0
Bibliographic databases:
Document Type: Article
UDC: 512.554
Language: Russian
Citation: V. N. Latyshev, “Standard basis in the $T$-ideal formed by polynomial identities of triangular matrices”, Fundam. Prikl. Mat., 16:3 (2010), 193–203; J. Math. Sci., 177:6 (2011), 908–914
Citation in format AMSBIB
\Bibitem{Lat10}
\by V.~N.~Latyshev
\paper Standard basis in the $T$-ideal formed by polynomial identities of triangular matrices
\jour Fundam. Prikl. Mat.
\yr 2010
\vol 16
\issue 3
\pages 193--203
\mathnet{http://mi.mathnet.ru/fpm1327}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2786537}
\transl
\jour J. Math. Sci.
\yr 2011
\vol 177
\issue 6
\pages 908--914
\crossref{https://doi.org/10.1007/s10958-011-0518-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052355591}
Linking options:
  • https://www.mathnet.ru/eng/fpm1327
  • https://www.mathnet.ru/eng/fpm/v16/i3/p193
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025