Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2010, Volume 16, Issue 3, Pages 161–192 (Mi fpm1326)  

This article is cited in 7 scientific papers (total in 7 papers)

Algebras whose equivalence relations are congruences

I. B. Kozhukhov, A. V. Reshetnikov

Moscow State Institute of Electronic Technology
Full-text PDF (314 kB) Citations (7)
References:
Abstract: It is proved that all the equivalence relations of a universal algebra $A$ are its congruences if and only if either $|A|\le2$ or every operation $f$ of the signature is a constant (i.e., $f(a_1,\dots,a_n)=c$ for some $c\in A$ and all the $a_1,\dots,a_n\in A$) or a projection (i.e., $f(a_1,\dots,a_n)=a_i$ for some $i$ and all the $a_1,\dots,a_n\in A$). All the equivalence relations of a groupoid $G$ are its right congruences if and only if either $|G|\le2$ or every element $a\in G$ is a right unit or a generalized right zero (i.e., $xa=ya$ for all $x,y\in G$). All the equivalence relations of a semigroup $S$ are right congruences if and only if either $|S|\le 2$ or $S$ can be represented as $S=A\cup B$, where $A$ is an inflation of a right zero semigroup, and $B$ is the empty set or a left zero semigroup, and $ab=a$, $ba=a^2$ for $a\in A$, $b\in B$. If $G$ is a groupoid of 4 or more elements and all the equivalence relations of it are right or left congruences, then either all the equivalence relations of the groupoid $G$ are left congruences, or all of them are right congruences. A similar assertion for semigroups is valid without the restriction on the number of elements.
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 177, Issue 6, Pages 886–907
DOI: https://doi.org/10.1007/s10958-011-0517-1
Bibliographic databases:
Document Type: Article
UDC: 512.571+512.548.2+512.533
Language: Russian
Citation: I. B. Kozhukhov, A. V. Reshetnikov, “Algebras whose equivalence relations are congruences”, Fundam. Prikl. Mat., 16:3 (2010), 161–192; J. Math. Sci., 177:6 (2011), 886–907
Citation in format AMSBIB
\Bibitem{KozRes10}
\by I.~B.~Kozhukhov, A.~V.~Reshetnikov
\paper Algebras whose equivalence relations are congruences
\jour Fundam. Prikl. Mat.
\yr 2010
\vol 16
\issue 3
\pages 161--192
\mathnet{http://mi.mathnet.ru/fpm1326}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2786536}
\elib{https://elibrary.ru/item.asp?id=16350333}
\transl
\jour J. Math. Sci.
\yr 2011
\vol 177
\issue 6
\pages 886--907
\crossref{https://doi.org/10.1007/s10958-011-0517-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052348584}
Linking options:
  • https://www.mathnet.ru/eng/fpm1326
  • https://www.mathnet.ru/eng/fpm/v16/i3/p161
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:604
    Full-text PDF :227
    References:62
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024