Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2010, Volume 16, Issue 3, Pages 105–122 (Mi fpm1321)  

This article is cited in 2 scientific papers (total in 2 papers)

A minimal infinitely based semigroup whose variety is polynomially recognizable

M. V. Volkova, S. V. Goldberga, S. I. Kublanovsky

a Ural State University
Full-text PDF (251 kB) Citations (2)
References:
Abstract: We exhibit a six-element semigroup that has no finite identity basis but nevertheless generates a variety whose finite membership problem admits a polynomial algorithm.
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 177, Issue 6, Pages 847–859
DOI: https://doi.org/10.1007/s10958-011-0512-6
Bibliographic databases:
Document Type: Article
UDC: 512.552
Language: Russian
Citation: M. V. Volkov, S. V. Goldberg, S. I. Kublanovsky, “A minimal infinitely based semigroup whose variety is polynomially recognizable”, Fundam. Prikl. Mat., 16:3 (2010), 105–122; J. Math. Sci., 177:6 (2011), 847–859
Citation in format AMSBIB
\Bibitem{VolGolKub10}
\by M.~V.~Volkov, S.~V.~Goldberg, S.~I.~Kublanovsky
\paper A~minimal infinitely based semigroup whose variety is polynomially recognizable
\jour Fundam. Prikl. Mat.
\yr 2010
\vol 16
\issue 3
\pages 105--122
\mathnet{http://mi.mathnet.ru/fpm1321}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2786531}
\elib{https://elibrary.ru/item.asp?id=16350328}
\transl
\jour J. Math. Sci.
\yr 2011
\vol 177
\issue 6
\pages 847--859
\crossref{https://doi.org/10.1007/s10958-011-0512-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052372467}
Linking options:
  • https://www.mathnet.ru/eng/fpm1321
  • https://www.mathnet.ru/eng/fpm/v16/i3/p105
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024