Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2010, Volume 16, Issue 3, Pages 41–62 (Mi fpm1319)  

Global dimension of Noetherian serial rings

N. A. Bronickaya, V. V. Kirichenko

National Taras Shevchenko University of Kyiv
References:
Abstract: The global dimension of Noetherian serial rings is studied. It is proved that if an indecomposable serial ring has infinite global dimension then it is Artinian and its quiver is a simple cycle. Using methods of the theory of right serial quivers, we give an upper estimate on the Loewy length of Artinian rings of finite global dimension. Applications to the calculation of the global dimension of tiled orders of width 2 are given.
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 177, Issue 6, Pages 801–816
DOI: https://doi.org/10.1007/s10958-011-0510-8
Bibliographic databases:
Document Type: Article
UDC: 512.552.1
Language: Russian
Citation: N. A. Bronickaya, V. V. Kirichenko, “Global dimension of Noetherian serial rings”, Fundam. Prikl. Mat., 16:3 (2010), 41–62; J. Math. Sci., 177:6 (2011), 801–816
Citation in format AMSBIB
\Bibitem{BroKir10}
\by N.~A.~Bronickaya, V.~V.~Kirichenko
\paper Global dimension of Noetherian serial rings
\jour Fundam. Prikl. Mat.
\yr 2010
\vol 16
\issue 3
\pages 41--62
\mathnet{http://mi.mathnet.ru/fpm1319}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2786529}
\transl
\jour J. Math. Sci.
\yr 2011
\vol 177
\issue 6
\pages 801--816
\crossref{https://doi.org/10.1007/s10958-011-0510-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052388328}
Linking options:
  • https://www.mathnet.ru/eng/fpm1319
  • https://www.mathnet.ru/eng/fpm/v16/i3/p41
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024