|
Fundamentalnaya i Prikladnaya Matematika, 2007, Volume 13, Issue 1, Pages 215–227
(Mi fpm13)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
The ideal of separants in the ring of differential polynomials
D. V. Trushin M. V. Lomonosov Moscow State University
Abstract:
We obtained the criterion of existence of a quasi-liner polynomial in a differential ideal
in the ordinary ring of differential polynomials over a field of characteristic zero. We
generalized the “going up” and “going down” theorems onto the case of Ritt algebras.
In particular, new finiteness criteria for differential standard bases and estimates that
characterize calculation complexity were obtained.
Citation:
D. V. Trushin, “The ideal of separants in the ring of differential polynomials”, Fundam. Prikl. Mat., 13:1 (2007), 215–227; J. Math. Sci., 152:4 (2008), 595–603
Linking options:
https://www.mathnet.ru/eng/fpm13 https://www.mathnet.ru/eng/fpm/v13/i1/p215
|
Statistics & downloads: |
Abstract page: | 338 | Full-text PDF : | 144 | References: | 39 | First page: | 1 |
|