Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2007, Volume 13, Issue 1, Pages 215–227 (Mi fpm13)  

This article is cited in 5 scientific papers (total in 5 papers)

The ideal of separants in the ring of differential polynomials

D. V. Trushin

M. V. Lomonosov Moscow State University
Full-text PDF (163 kB) Citations (5)
References:
Abstract: We obtained the criterion of existence of a quasi-liner polynomial in a differential ideal in the ordinary ring of differential polynomials over a field of characteristic zero. We generalized the “going up” and “going down” theorems onto the case of Ritt algebras. In particular, new finiteness criteria for differential standard bases and estimates that characterize calculation complexity were obtained.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 152, Issue 4, Pages 595–603
DOI: https://doi.org/10.1007/s10958-008-9074-7
Bibliographic databases:
UDC: 512.628.2
Language: Russian
Citation: D. V. Trushin, “The ideal of separants in the ring of differential polynomials”, Fundam. Prikl. Mat., 13:1 (2007), 215–227; J. Math. Sci., 152:4 (2008), 595–603
Citation in format AMSBIB
\Bibitem{Tru07}
\by D.~V.~Trushin
\paper The ideal of separants in the ring of differential polynomials
\jour Fundam. Prikl. Mat.
\yr 2007
\vol 13
\issue 1
\pages 215--227
\mathnet{http://mi.mathnet.ru/fpm13}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2322968}
\zmath{https://zbmath.org/?q=an:1192.12006}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 152
\issue 4
\pages 595--603
\crossref{https://doi.org/10.1007/s10958-008-9074-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51749116933}
Linking options:
  • https://www.mathnet.ru/eng/fpm13
  • https://www.mathnet.ru/eng/fpm/v13/i1/p215
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025