Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2010, Volume 16, Issue 1, Pages 13–38 (Mi fpm1287)  

This article is cited in 7 scientific papers (total in 7 papers)

Cartan–Laptev method in the theory of multidimensional three-webs

M. A. Akivisa, A. M. Shelekhovb

a Israel
b Tver State University
Full-text PDF (242 kB) Citations (7)
References:
Abstract: We show how the Cartan–Laptev method which generalizes Elie Cartan's method of external forms and moving frames is supplied to the study of closed $G$-structures defined by multidimensional three-webs formed on a $C^s$-smooth manifold of dimension $2r$, $r\ge1$, $s\ge3$, by a triple of foliations of codimension $r$. We say that a tensor $T$ belonging to a differential-geometric object of order $s$ of three-web $W$ is closed if it can be expressed in terms of components of objects of lower order $s$. We find all closed tensors of a three-web and the geometric sense of one of relations connecting three-web tensors. We also point out some sufficient conditions for the web to have a closed $G$-structure. It follows from our results that the $G$-structure associated with a hexagonal three-web $W$ is a closed $G$-structure of class 4. It is proved that basic tensors of a three-web $W$ belonging to a differential-geometric object of order $s$ of the web can be expressed in terms of $s$-jet of the canonical expansion of its coordinate loop, and conversely. This implies that the canonical expansion of every coordinate loop of a three-web $W$ with closed $G$-structure of class $s$ is completely defined by an $s$-jet of this expansion. We also consider webs with one-digit identities of $k$th order in their coordinate loops and find the conditions for these webs to have the closed $G$-structure.
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 177, Issue 4, Pages 522–540
DOI: https://doi.org/10.1007/s10958-011-0477-5
Bibliographic databases:
Document Type: Article
UDC: 514.763.7
Language: Russian
Citation: M. A. Akivis, A. M. Shelekhov, “Cartan–Laptev method in the theory of multidimensional three-webs”, Fundam. Prikl. Mat., 16:1 (2010), 13–38; J. Math. Sci., 177:4 (2011), 522–540
Citation in format AMSBIB
\Bibitem{AkiShe10}
\by M.~A.~Akivis, A.~M.~Shelekhov
\paper Cartan--Laptev method in the theory of multidimensional three-webs
\jour Fundam. Prikl. Mat.
\yr 2010
\vol 16
\issue 1
\pages 13--38
\mathnet{http://mi.mathnet.ru/fpm1287}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2786488}
\elib{https://elibrary.ru/item.asp?id=16350294}
\transl
\jour J. Math. Sci.
\yr 2011
\vol 177
\issue 4
\pages 522--540
\crossref{https://doi.org/10.1007/s10958-011-0477-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052264015}
Linking options:
  • https://www.mathnet.ru/eng/fpm1287
  • https://www.mathnet.ru/eng/fpm/v16/i1/p13
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:394
    Full-text PDF :159
    References:36
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024