Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2010, Volume 16, Issue 1, Pages 3–12 (Mi fpm1286)  

This article is cited in 2 scientific papers (total in 2 papers)

Projective analog of Egorov transformation

M. A. Akivis

Israel
Full-text PDF (134 kB) Citations (2)
References:
Abstract: We prove the following assertion, which is a projective analog of the well-known Egorov theorem on surfaces in the Euclidean space: a family of lines $v=\mathrm{const}$ on a surface $S$ in $\mathbf P^3$ is a basis for Egorov transformation if and only if the surface bands defined on $S$ by these lines belong to bilinear systems of plane elements. There exist a whole set of Egorov transformations that depend on one function of $v$ with this family of lines as the basis of the correspondence.
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 177, Issue 4, Pages 515–521
DOI: https://doi.org/10.1007/s10958-011-0476-6
Bibliographic databases:
Document Type: Article
UDC: 514.76
Language: Russian
Citation: M. A. Akivis, “Projective analog of Egorov transformation”, Fundam. Prikl. Mat., 16:1 (2010), 3–12; J. Math. Sci., 177:4 (2011), 515–521
Citation in format AMSBIB
\Bibitem{Aki10}
\by M.~A.~Akivis
\paper Projective analog of Egorov transformation
\jour Fundam. Prikl. Mat.
\yr 2010
\vol 16
\issue 1
\pages 3--12
\mathnet{http://mi.mathnet.ru/fpm1286}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2786487}
\elib{https://elibrary.ru/item.asp?id=16350293}
\transl
\jour J. Math. Sci.
\yr 2011
\vol 177
\issue 4
\pages 515--521
\crossref{https://doi.org/10.1007/s10958-011-0476-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052264340}
Linking options:
  • https://www.mathnet.ru/eng/fpm1286
  • https://www.mathnet.ru/eng/fpm/v16/i1/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:429
    Full-text PDF :148
    References:75
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024