Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2009, Volume 15, Issue 8, Pages 213–228 (Mi fpm1285)  

This article is cited in 2 scientific papers (total in 2 papers)

Completely integrally closed modules and rings

A. A. Tuganbaev

Russian State University of Trade and Economics
Full-text PDF (180 kB) Citations (2)
References:
Abstract: A ring $A$ is a completely integrally closed right $A$-module if and only if the maximal right ring of quotients $Q_\mathrm{max}(A)$ of $A$ is an injective right $A$-module and $A$ is a right completely integrally closed subring in $Q_\mathrm{max}(A)$. A right Noetherian, right integrally closed ring $A$ is a completely integrally closed right $A$-module.
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 171, Issue 2, Pages 296–306
DOI: https://doi.org/10.1007/s10958-010-0134-4
Bibliographic databases:
Document Type: Article
UDC: 512.55
Language: Russian
Citation: A. A. Tuganbaev, “Completely integrally closed modules and rings”, Fundam. Prikl. Mat., 15:8 (2009), 213–228; J. Math. Sci., 171:2 (2010), 296–306
Citation in format AMSBIB
\Bibitem{Tug09}
\by A.~A.~Tuganbaev
\paper Completely integrally closed modules and rings
\jour Fundam. Prikl. Mat.
\yr 2009
\vol 15
\issue 8
\pages 213--228
\mathnet{http://mi.mathnet.ru/fpm1285}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2745017}
\transl
\jour J. Math. Sci.
\yr 2010
\vol 171
\issue 2
\pages 296--306
\crossref{https://doi.org/10.1007/s10958-010-0134-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78249281641}
Linking options:
  • https://www.mathnet.ru/eng/fpm1285
  • https://www.mathnet.ru/eng/fpm/v15/i8/p213
    Cycle of papers
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025