|
Fundamentalnaya i Prikladnaya Matematika, 2009, Volume 15, Issue 7, Pages 81–112
(Mi fpm1271)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Elementary equivalence of the automorphism groups of Abelian $p$-groups
E. I. Bunina, M. A. Roizner M. V. Lomonosov Moscow State University
Abstract:
We consider Abelian $p$-groups ($p\geq3$) $A_1=D_1\oplus G_1$ and $A_2=D_2\oplus G_2$, where $D_1$ and $D_2$ are divisible and $G_1$ and $G_2$ are reduced subgroups. We prove that if the automorphism groups $\operatorname{Aut}A_1$ and $\operatorname{Aut}A_2$ are elementarily equivalent, then the groups $D_1$, $D_2$ and $G_1$, $G_2$ are equivalent, respectively, in the second-order logic.
Citation:
E. I. Bunina, M. A. Roizner, “Elementary equivalence of the automorphism groups of Abelian $p$-groups”, Fundam. Prikl. Mat., 15:7 (2009), 81–112; J. Math. Sci., 169:5 (2010), 614–635
Linking options:
https://www.mathnet.ru/eng/fpm1271 https://www.mathnet.ru/eng/fpm/v15/i7/p81
|
|