Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1995, Volume 1, Issue 4, Pages 1125–1128 (Mi fpm123)  

Short communications

On the convergence in $H^{s}$-norm of the spectral expansions corresponding to the differential operators with singularity

V. S. Serov

M. V. Lomonosov Moscow State University
References:
Abstract: In this work we prove the convergence in the norm of the Sobolev spaces $H^s(\mathbb R^{N})$ of the spectral expansions corresponding to the self-adjont extansions in $L^2(\mathbb R^{N})$ of the operators in the following way:
$$ A(x,D)=P(D)+Q(x), $$
where $P(D)$ is the self-adjont elliptic operator with constant coefficients and of order $m$ and real potential $Q(x)$ belongs to Kato space. As a consequence of this result we have the uniform convergence of these expansions for the case $m>\frac{N}{2}$.
Received: 01.02.1995
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: V. S. Serov, “On the convergence in $H^{s}$-norm of the spectral expansions corresponding to the differential operators with singularity”, Fundam. Prikl. Mat., 1:4 (1995), 1125–1128
Citation in format AMSBIB
\Bibitem{Ser95}
\by V.~S.~Serov
\paper On the convergence in $H^{s}$-norm of the spectral expansions corresponding to the differential operators with singularity
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 4
\pages 1125--1128
\mathnet{http://mi.mathnet.ru/fpm123}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1791799}
\zmath{https://zbmath.org/?q=an:0867.35067}
Linking options:
  • https://www.mathnet.ru/eng/fpm123
  • https://www.mathnet.ru/eng/fpm/v1/i4/p1125
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024