|
Fundamentalnaya i Prikladnaya Matematika, 2008, Volume 14, Issue 8, Pages 151–157
(Mi fpm1196)
|
|
|
|
On coherent families of uniformizing elements in some towers of Abelian extensions of local number fields
L. V. Kuz'min Russian Research Centre "Kurchatov Institute"
Abstract:
For a local number field $K$ with the ring of integers $\mathcal O_K$, the residue field $\mathbb F_q$, and uniformizing $\pi$, we consider the Lubin–Tate tower $K_\pi=\bigcup_{n\geq0}K_n$, where $K_n=K(\pi_n)$, $f(\pi_0)=0$, and $f(\pi_{n+1})=\pi_n$. Here $f(X)$ defines the endomorphism $[\pi]$ of the Lubin–Tate group. If $q\neq2$, then for any formal power series $g(X)\in\mathcal O_K[[X]]$ the following equality holds: $\sum_{n=0}^\infty\mathrm{Sp}_{K_n/K}g(\pi_n)=-g(0)$. One has a similar equality in the case $q=2$.
Citation:
L. V. Kuz'min, “On coherent families of uniformizing elements in some towers of Abelian extensions of local number fields”, Fundam. Prikl. Mat., 14:8 (2008), 151–157; J. Math. Sci., 166:5 (2010), 670–674
Linking options:
https://www.mathnet.ru/eng/fpm1196 https://www.mathnet.ru/eng/fpm/v14/i8/p151
|
Statistics & downloads: |
Abstract page: | 270 | Full-text PDF : | 78 | References: | 45 | First page: | 1 |
|