Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1995, Volume 1, Issue 4, Pages 1009–1018 (Mi fpm119)  

On asymptotic behavior of some class of random matrix iterations

A. Yu. Plakhov

Institute for Physico-Technical Problems
References:
Abstract: In the paper iterations $J_{m+1}=J_m-\varepsilon J_mL_{S_m}J_m$, $m=0,1,2,\ldots$; $\varepsilon>0$ are considered. $J_m$ and $L_{S_m}$ are selfadjoint operators on $\mathbb R^N$, $L_{S_m}=(\cdot,S_m)S_m$, with $S_m$ being independent identically distributed random vectors which satisfy some additional conditions. Initial opetator $J_0$ is nonrandom. Asymptotic behavior of the rescaled operator $\tilde{J_m}=\|J_m\|^{-1}J_m$ is examined. Problems of this type appear in neural network theory when studying REM sleep phenomenon. It is proven that one of the following three relations holds almost surely: I. $\lim_{m\to\infty}\tilde{J}_m=P_{\mathcal L}$; II. $\lim_{m\to\infty}\tilde{J}_m=-P_{\xi}$; III. $J_m=0$ starting from some $m_0$; here $P_{\mathcal L}$ and $P_{\xi}$ are orthogonal projectors on random subspace $\mathcal L\subset\mathbb R^N$ and one-dimensional subspace spanned by random nonzero vector $\xi$, respectively. Denote $P_+(\varepsilon)$ and $P_-(\varepsilon)$ the probabilities of asymptotic behaviors I and II. For $J_0$ being nonzero positive semidefinite it is shown that $\lim_{\varepsilon\to+0}P_+(\varepsilon)=1$, $\lim_{\varepsilon\to+\infty}P_-(\varepsilon)=1$, but if $J_0$ has at least one negative eigenvalue, then $P_-(\varepsilon)\equiv1$.
Received: 01.05.1995
Bibliographic databases:
UDC: 519.21.219.5
Language: Russian
Citation: A. Yu. Plakhov, “On asymptotic behavior of some class of random matrix iterations”, Fundam. Prikl. Mat., 1:4 (1995), 1009–1018
Citation in format AMSBIB
\Bibitem{Pla95}
\by A.~Yu.~Plakhov
\paper On asymptotic behavior of some class of random matrix iterations
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 4
\pages 1009--1018
\mathnet{http://mi.mathnet.ru/fpm119}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1791625}
\zmath{https://zbmath.org/?q=an:0871.60006}
Linking options:
  • https://www.mathnet.ru/eng/fpm119
  • https://www.mathnet.ru/eng/fpm/v1/i4/p1009
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:222
    Full-text PDF :81
    References:38
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024