Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2008, Volume 14, Issue 8, Pages 3–54 (Mi fpm1188)  

Strongly continuous semigroups of operators generated by systems of pseudodifferential operators in weighted $L_p$-spaces

K. Kh. Boimatov, I. E. Egorova, M. G. Gadoevb

a Institute for Mathematics, Yakutsk State University
b Polytechnic Institute (branch of the YSU in the c. Mirniy)
References:
Abstract: The paper considers semigroups of operators generated by pseudodifferential operators in weighted $L_p$-spaces of vector functions on $\mathbb R^n$ (or on a compact manifold without boundary). Sufficient conditions for a semigroup to be strongly continuous and analytic are obtained, conditions for it to be completely continuous are found, and the distribution of the eigenvalues of its infinitesimal generator is examined. Also, an integral representation that singles out the principal term of the semigroup as $t\to0+$ is established.
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 166, Issue 5, Pages 563–602
DOI: https://doi.org/10.1007/s10958-010-9874-4
Bibliographic databases:
UDC: 517.946
Language: Russian
Citation: K. Kh. Boimatov, I. E. Egorov, M. G. Gadoev, “Strongly continuous semigroups of operators generated by systems of pseudodifferential operators in weighted $L_p$-spaces”, Fundam. Prikl. Mat., 14:8 (2008), 3–54; J. Math. Sci., 166:5 (2010), 563–602
Citation in format AMSBIB
\Bibitem{BoiEgoGad08}
\by K.~Kh.~Boimatov, I.~E.~Egorov, M.~G.~Gadoev
\paper Strongly continuous semigroups of operators generated by systems of pseudodifferential operators in weighted $L_p$-spaces
\jour Fundam. Prikl. Mat.
\yr 2008
\vol 14
\issue 8
\pages 3--54
\mathnet{http://mi.mathnet.ru/fpm1188}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2744932}
\elib{https://elibrary.ru/item.asp?id=12868939}
\transl
\jour J. Math. Sci.
\yr 2010
\vol 166
\issue 5
\pages 563--602
\crossref{https://doi.org/10.1007/s10958-010-9874-4}
\elib{https://elibrary.ru/item.asp?id=15315668}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952291821}
Linking options:
  • https://www.mathnet.ru/eng/fpm1188
  • https://www.mathnet.ru/eng/fpm/v14/i8/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024