Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2008, Volume 14, Issue 7, Pages 209–221 (Mi fpm1185)  

Splitting length of Abelian mixed groups of torsion-free rank 1

Pham Thi Thu Thuy

M. V. Lomonosov Moscow State University
References:
Abstract: Splitting length of a mixed Abelian group $G$ is defined as the smallest positive integer $n$ such that $\bigotimes\limits^nG$ splits. The task of determining the splitting length of mixed Abelian groups was formulated by Irwin, Khabbaz, and Rayna. In this paper, a criterion for determining whether $\bigotimes\limits^nG$ splits for countable mixed Abelian groups $G$ of torsion-free rank 1 is found.
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 164, Issue 2, Pages 294–302
DOI: https://doi.org/10.1007/s10958-009-9731-5
Bibliographic databases:
UDC: 512.541
Language: Russian
Citation: Pham Thi Thu Thuy, “Splitting length of Abelian mixed groups of torsion-free rank 1”, Fundam. Prikl. Mat., 14:7 (2008), 209–221; J. Math. Sci., 164:2 (2010), 294–302
Citation in format AMSBIB
\Bibitem{Thu08}
\by Pham Thi Thu Thuy
\paper Splitting length of Abelian mixed groups of torsion-free rank~1
\jour Fundam. Prikl. Mat.
\yr 2008
\vol 14
\issue 7
\pages 209--221
\mathnet{http://mi.mathnet.ru/fpm1185}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2533609}
\elib{https://elibrary.ru/item.asp?id=12291811}
\transl
\jour J. Math. Sci.
\yr 2010
\vol 164
\issue 2
\pages 294--302
\crossref{https://doi.org/10.1007/s10958-009-9731-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-71649096375}
Linking options:
  • https://www.mathnet.ru/eng/fpm1185
  • https://www.mathnet.ru/eng/fpm/v14/i7/p209
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:368
    Full-text PDF :125
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024