|
Fundamentalnaya i Prikladnaya Matematika, 2008, Volume 14, Issue 7, Pages 53–62
(Mi fpm1173)
|
|
|
|
Regev's and Amitsur's conjectures for codimensions of generalized polynomial identities
A. S. Gordienko M. V. Lomonosov Moscow State University
Abstract:
Let $A$ be a finite-dimensional associative algebra over a field of characteristic 0. Then there exist $C\in\mathbb Q_+$ and $t\in\mathbb Z_+$ such that $\mathrm{gc}_n(A)\sim Cn^td^n$ as $n\to\infty$, where $d=\mathrm{PI}\exp(A)$. In particular, Amitsur's and Regev's conjectures hold for the codimensions $\mathrm{gc}_n(A)$ of generalized polynomial identities.
Citation:
A. S. Gordienko, “Regev's and Amitsur's conjectures for codimensions of generalized polynomial identities”, Fundam. Prikl. Mat., 14:7 (2008), 53–62; J. Math. Sci., 164:2 (2010), 188–194
Linking options:
https://www.mathnet.ru/eng/fpm1173 https://www.mathnet.ru/eng/fpm/v14/i7/p53
|
Statistics & downloads: |
Abstract page: | 260 | Full-text PDF : | 109 | References: | 71 | First page: | 1 |
|