Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2008, Volume 14, Issue 7, Pages 43–51 (Mi fpm1172)  

This article is cited in 8 scientific papers (total in 8 papers)

Upper-modular elements of the lattice of semigroup varieties. II

B. M. Vernikov

Ural State University
Full-text PDF (124 kB) Citations (8)
References:
Abstract: A semigroup variety is called a variety of degree $\le2$ if all its nilsemigroups are semigroups with zero multiplication, and a variety of degree $>2$ otherwise. We completely determine all semigroup varieties of degree $>2$ that are upper-modular elements of the lattice of all semigroup varieties and find quite a strong necessary condition for semigroup varieties of degree $\le2$ to have the same property.
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 164, Issue 2, Pages 182–187
DOI: https://doi.org/10.1007/s10958-009-9718-2
Bibliographic databases:
UDC: 512.532
Language: Russian
Citation: B. M. Vernikov, “Upper-modular elements of the lattice of semigroup varieties. II”, Fundam. Prikl. Mat., 14:7 (2008), 43–51; J. Math. Sci., 164:2 (2010), 182–187
Citation in format AMSBIB
\Bibitem{Ver08}
\by B.~M.~Vernikov
\paper Upper-modular elements of the lattice of semigroup varieties.~II
\jour Fundam. Prikl. Mat.
\yr 2008
\vol 14
\issue 7
\pages 43--51
\mathnet{http://mi.mathnet.ru/fpm1172}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2533596}
\transl
\jour J. Math. Sci.
\yr 2010
\vol 164
\issue 2
\pages 182--187
\crossref{https://doi.org/10.1007/s10958-009-9718-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-71649103279}
Linking options:
  • https://www.mathnet.ru/eng/fpm1172
  • https://www.mathnet.ru/eng/fpm/v14/i7/p43
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024