Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2008, Volume 14, Issue 6, Pages 193–209 (Mi fpm1165)  

This article is cited in 3 scientific papers (total in 3 papers)

Symbol algebras and cyclicity of algebras after a scalar extension

U. Rehmanna, S. V. Tikhonovb, V. I. Yanchevskiib

a Bielefeld University, Germany
b Institute of Mathematics of the National Academy of Sciences of Belarus
Full-text PDF (215 kB) Citations (3)
References:
Abstract: For a field $F$ and a family of central simple $F$-algebras we prove that there exists a regular field extension $E/F$ preserving indices of $F$-algebras such that all the algebras from the family are cyclic after scalar extension by $E$. Let $\mathcal A$ be a central simple algebra over a field $F$ of degree $n$ with a primitive $n$th root of unity $\rho_n$. We construct a quasi-affine $F$-variety $\mathrm{Symb}(\mathcal A)$ such that for a field extension $L/F$ $\mathrm{Symb}(\mathcal A)$ has an $L$-rational point if and only if $\mathcal A\otimes_FL$ is a symbol algebra. Let $\mathcal A$ be a central simple algebra over a field $F$ of degree $n$ and $K/F$ be a cyclic field extension of degree $n$. We construct a quasi-affine $F$-variety $C(\mathcal A,K)$ such that, for a field extension $L/F$ with the property $[KL:L]=[K:F]$, the variety $C(\mathcal A,K)$ has an $L$-rational point if and only if $KL$ is a subfield of $\mathcal A\otimes_FL$.
English version:
Journal of Mathematical Sciences (New York), 2010, Volume 164, Issue 1, Pages 131–142
DOI: https://doi.org/10.1007/s10958-009-9742-2
Bibliographic databases:
UDC: 512.7
Language: Russian
Citation: U. Rehmann, S. V. Tikhonov, V. I. Yanchevskii, “Symbol algebras and cyclicity of algebras after a scalar extension”, Fundam. Prikl. Mat., 14:6 (2008), 193–209; J. Math. Sci., 164:1 (2010), 131–142
Citation in format AMSBIB
\Bibitem{RehTikYan08}
\by U.~Rehmann, S.~V.~Tikhonov, V.~I.~Yanchevskii
\paper Symbol algebras and cyclicity of algebras after a~scalar extension
\jour Fundam. Prikl. Mat.
\yr 2008
\vol 14
\issue 6
\pages 193--209
\mathnet{http://mi.mathnet.ru/fpm1165}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2533621}
\transl
\jour J. Math. Sci.
\yr 2010
\vol 164
\issue 1
\pages 131--142
\crossref{https://doi.org/10.1007/s10958-009-9742-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-71649090977}
Linking options:
  • https://www.mathnet.ru/eng/fpm1165
  • https://www.mathnet.ru/eng/fpm/v14/i6/p193
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024